TY - JOUR
T1 - Using video-reflexive ethnography and simulation-based education to explore patient management and error recognition by pre-registration physiotherapists
AU - Gough, Suzanne
AU - Yohannes, Abebaw Mengistu
AU - Murray, Janice
N1 - Funding Information:
The authors would like to acknowledge Dr. Pennie Roberts (Retired Head of the Physiotherapy Department, Manchester Metropolitan University) for providing the doctoral supervision. The authors thank Mrs. Leah Greene (Manchester Metropolitan University) and the anonymous reviewers for their critical review of this article.
Publisher Copyright:
© 2016, Gough et al.
PY - 2016
Y1 - 2016
N2 - Background: Upon graduation, physiotherapists are required to manage clinical caseloads involving deteriorating patients with complex conditions. In particular, emergency on-call physiotherapists are required to provide respiratory/cardio-respiratory/cardiothoracic physiotherapy, out of normal working hours, without senior physiotherapist support. To optimise patient safety, physiotherapists are required to function within complex clinical environments, drawing on their knowledge and skills (technical and non-technical), maintaining situational awareness and filtering unwanted stimuli from the environment. Prior to this study, the extent to which final-year physiotherapy students were able to manage an acutely deteriorating patient in a simulation context and recognise errors in their own practice was unknown.Methods: A focused video-reflexive ethnography study was undertaken to explore behaviours, error recognition abilities and personal experiences of 21 final-year (pre-registration) physiotherapy students from one higher education institution. Social constructivism and complexity theoretical perspectives informed the methodological design of the study. Video and thematic analysis of 12 simulation scenarios and video-reflexive interviews were undertaken.Results: Participants worked within the professional standards of physiotherapy practice expected of entry-level physiotherapists. Students reflected appropriate responses to their own and others' actions in the midst of uncertainty of the situation and physiological disturbances that unfolded during the scenario. However, they demonstrated a limited independent ability to recognise errors. Latent errors, active failures, error-producing factors and a series of effective defences to mitigate errors were identified through video analysis. Perceived influential factors affecting student performance within the scenario were attributed to aspects of academic and placement learning and the completion of a voluntary acute illness management course. The perceived value of the simulation scenario was enhanced by the opportunity to review their own simulation video with realism afforded by the scenario design.Conclusions: This study presents a unique insight into the experiences, skills, attitudes, behaviours and error recognition abilities of pre-registration physiotherapy students managing an acutely deteriorating patient in a simulation context. Findings of this research provide valuable insights to inform future research regarding physiotherapy practice, integration of educational methods to augment patient safety awareness and participant-led innovations in safe healthcare practice.
AB - Background: Upon graduation, physiotherapists are required to manage clinical caseloads involving deteriorating patients with complex conditions. In particular, emergency on-call physiotherapists are required to provide respiratory/cardio-respiratory/cardiothoracic physiotherapy, out of normal working hours, without senior physiotherapist support. To optimise patient safety, physiotherapists are required to function within complex clinical environments, drawing on their knowledge and skills (technical and non-technical), maintaining situational awareness and filtering unwanted stimuli from the environment. Prior to this study, the extent to which final-year physiotherapy students were able to manage an acutely deteriorating patient in a simulation context and recognise errors in their own practice was unknown.Methods: A focused video-reflexive ethnography study was undertaken to explore behaviours, error recognition abilities and personal experiences of 21 final-year (pre-registration) physiotherapy students from one higher education institution. Social constructivism and complexity theoretical perspectives informed the methodological design of the study. Video and thematic analysis of 12 simulation scenarios and video-reflexive interviews were undertaken.Results: Participants worked within the professional standards of physiotherapy practice expected of entry-level physiotherapists. Students reflected appropriate responses to their own and others' actions in the midst of uncertainty of the situation and physiological disturbances that unfolded during the scenario. However, they demonstrated a limited independent ability to recognise errors. Latent errors, active failures, error-producing factors and a series of effective defences to mitigate errors were identified through video analysis. Perceived influential factors affecting student performance within the scenario were attributed to aspects of academic and placement learning and the completion of a voluntary acute illness management course. The perceived value of the simulation scenario was enhanced by the opportunity to review their own simulation video with realism afforded by the scenario design.Conclusions: This study presents a unique insight into the experiences, skills, attitudes, behaviours and error recognition abilities of pre-registration physiotherapy students managing an acutely deteriorating patient in a simulation context. Findings of this research provide valuable insights to inform future research regarding physiotherapy practice, integration of educational methods to augment patient safety awareness and participant-led innovations in safe healthcare practice.
UR - http://www.scopus.com/inward/record.url?scp=85000957729&partnerID=8YFLogxK
U2 - 10.1186/s41077-016-0010-5
DO - 10.1186/s41077-016-0010-5
M3 - Article
C2 - 29449978
SN - 2059-0628
VL - 1
JO - Advances in Simulation
JF - Advances in Simulation
IS - 1
M1 - 9
ER -