Use of Human Body Morphology as an Indication of Physical Fitness: Implications for Police Officers

Filip Kukic, Milivoj Dopsaj, James Dawes, Rob Marc Orr, Aleksandar Cvorovic

Research output: Contribution to journalArticleResearchpeer-review

2 Citations (Scopus)
42 Downloads (Pure)

Abstract

Research with police officers (POs) suggests an association between body composition, physical performance and health. The aim of the study was to investigate the associations between body composition and measures of physical fitness, and their use to predict estimated physical fitness score (EPFS). The sample included 163 male POs (age = 31.61 ± 4.79 years, height = 172.97 ± 6.09 cm, body mass = 77.53 ± 11.66 kg). Eight body composition variables: body mass index (BMI), body fat mass index (BFMI), percent of body fat (PBF), percent skeletal muscle mass (PSMM), index of hypokinezia (IH), skeletal muscle mass index (SMMI), protein mass index (PMI), and fat-free mass index (FFMI); and four physical fitness measures: a 3.2 km run, a 2-minute push-up, 2-minute sit-up and estimated physical fitness score (EPFS) were correlated, followed by the regression analysis for causal relationship between body composition and EPFS. Running 3.2 km test correlated to BMI, PBF, PSMM, BFMI, and SMMI (r = 0.274, 0.250, -0.234, 0.311, p<0.01, respectively); 2-minute push-up correlated to PBF, PSMM, BFMI, SMMI, PMI, IH, and FFMI (r = -0.413, 0.436, -0.375, 0.221, 0.231, -0.411, 0.261, p<0.01, respectively); 2-minute sit-up correlated to PBF, PSMM, BFMI, and IH (r = -0.237, 0.250, -0.236, -0.218, p<0.01, respectively); and EPFS correlated to BMI, FFMI, PBF, PSMM, BFMI, and IH (r = -0.200, 0.168, p<0.05, and r = -0.369, 0.378, 0.376, -0.317, p <0.01, respectively). Two models of predictions were extracted: 1) PBF, BFMI, PMI and FFMI (R2 = 0.250, p<0.001); 2) PBF, BFMI and PMI (R2 = 0.244, p<0.001). Obtained prediction models may be a promising screening method of a POs’ fitness, when conducting the physical tests is not possible or safe (obese and injured POs or bad weather conditions).
Original languageEnglish
Pages (from-to)1407-1412
Number of pages6
JournalInternational Journal of Morphology
Volume36
Issue number4
DOIs
Publication statusPublished - 1 Dec 2018

Fingerprint

Physical Fitness
Police
Human Body
Body Mass Index
Fats
Skeletal Muscle
Adipose Tissue
Body Composition
Fat Body
Proteins
Body Weights and Measures
Weather
Regression Analysis

Cite this

Kukic, Filip ; Dopsaj, Milivoj ; Dawes, James ; Orr, Rob Marc ; Cvorovic, Aleksandar . / Use of Human Body Morphology as an Indication of Physical Fitness: Implications for Police Officers. In: International Journal of Morphology. 2018 ; Vol. 36, No. 4. pp. 1407-1412.
@article{60113208f896457fa14e809e95461245,
title = "Use of Human Body Morphology as an Indication of Physical Fitness: Implications for Police Officers",
abstract = "Research with police officers (POs) suggests an association between body composition, physical performance and health. The aim of the study was to investigate the associations between body composition and measures of physical fitness, and their use to predict estimated physical fitness score (EPFS). The sample included 163 male POs (age = 31.61 ± 4.79 years, height = 172.97 ± 6.09 cm, body mass = 77.53 ± 11.66 kg). Eight body composition variables: body mass index (BMI), body fat mass index (BFMI), percent of body fat (PBF), percent skeletal muscle mass (PSMM), index of hypokinezia (IH), skeletal muscle mass index (SMMI), protein mass index (PMI), and fat-free mass index (FFMI); and four physical fitness measures: a 3.2 km run, a 2-minute push-up, 2-minute sit-up and estimated physical fitness score (EPFS) were correlated, followed by the regression analysis for causal relationship between body composition and EPFS. Running 3.2 km test correlated to BMI, PBF, PSMM, BFMI, and SMMI (r = 0.274, 0.250, -0.234, 0.311, p<0.01, respectively); 2-minute push-up correlated to PBF, PSMM, BFMI, SMMI, PMI, IH, and FFMI (r = -0.413, 0.436, -0.375, 0.221, 0.231, -0.411, 0.261, p<0.01, respectively); 2-minute sit-up correlated to PBF, PSMM, BFMI, and IH (r = -0.237, 0.250, -0.236, -0.218, p<0.01, respectively); and EPFS correlated to BMI, FFMI, PBF, PSMM, BFMI, and IH (r = -0.200, 0.168, p<0.05, and r = -0.369, 0.378, 0.376, -0.317, p <0.01, respectively). Two models of predictions were extracted: 1) PBF, BFMI, PMI and FFMI (R2 = 0.250, p<0.001); 2) PBF, BFMI and PMI (R2 = 0.244, p<0.001). Obtained prediction models may be a promising screening method of a POs’ fitness, when conducting the physical tests is not possible or safe (obese and injured POs or bad weather conditions).",
author = "Filip Kukic and Milivoj Dopsaj and James Dawes and Orr, {Rob Marc} and Aleksandar Cvorovic",
year = "2018",
month = "12",
day = "1",
doi = "10.4067/S0717-95022018000401407",
language = "English",
volume = "36",
pages = "1407--1412",
journal = "International Journal of Morphology",
issn = "0717-9367",
publisher = "SOC CHILENA ANATOMIA",
number = "4",

}

Use of Human Body Morphology as an Indication of Physical Fitness: Implications for Police Officers. / Kukic, Filip; Dopsaj, Milivoj ; Dawes, James; Orr, Rob Marc; Cvorovic, Aleksandar .

In: International Journal of Morphology, Vol. 36, No. 4, 01.12.2018, p. 1407-1412.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Use of Human Body Morphology as an Indication of Physical Fitness: Implications for Police Officers

AU - Kukic, Filip

AU - Dopsaj, Milivoj

AU - Dawes, James

AU - Orr, Rob Marc

AU - Cvorovic, Aleksandar

PY - 2018/12/1

Y1 - 2018/12/1

N2 - Research with police officers (POs) suggests an association between body composition, physical performance and health. The aim of the study was to investigate the associations between body composition and measures of physical fitness, and their use to predict estimated physical fitness score (EPFS). The sample included 163 male POs (age = 31.61 ± 4.79 years, height = 172.97 ± 6.09 cm, body mass = 77.53 ± 11.66 kg). Eight body composition variables: body mass index (BMI), body fat mass index (BFMI), percent of body fat (PBF), percent skeletal muscle mass (PSMM), index of hypokinezia (IH), skeletal muscle mass index (SMMI), protein mass index (PMI), and fat-free mass index (FFMI); and four physical fitness measures: a 3.2 km run, a 2-minute push-up, 2-minute sit-up and estimated physical fitness score (EPFS) were correlated, followed by the regression analysis for causal relationship between body composition and EPFS. Running 3.2 km test correlated to BMI, PBF, PSMM, BFMI, and SMMI (r = 0.274, 0.250, -0.234, 0.311, p<0.01, respectively); 2-minute push-up correlated to PBF, PSMM, BFMI, SMMI, PMI, IH, and FFMI (r = -0.413, 0.436, -0.375, 0.221, 0.231, -0.411, 0.261, p<0.01, respectively); 2-minute sit-up correlated to PBF, PSMM, BFMI, and IH (r = -0.237, 0.250, -0.236, -0.218, p<0.01, respectively); and EPFS correlated to BMI, FFMI, PBF, PSMM, BFMI, and IH (r = -0.200, 0.168, p<0.05, and r = -0.369, 0.378, 0.376, -0.317, p <0.01, respectively). Two models of predictions were extracted: 1) PBF, BFMI, PMI and FFMI (R2 = 0.250, p<0.001); 2) PBF, BFMI and PMI (R2 = 0.244, p<0.001). Obtained prediction models may be a promising screening method of a POs’ fitness, when conducting the physical tests is not possible or safe (obese and injured POs or bad weather conditions).

AB - Research with police officers (POs) suggests an association between body composition, physical performance and health. The aim of the study was to investigate the associations between body composition and measures of physical fitness, and their use to predict estimated physical fitness score (EPFS). The sample included 163 male POs (age = 31.61 ± 4.79 years, height = 172.97 ± 6.09 cm, body mass = 77.53 ± 11.66 kg). Eight body composition variables: body mass index (BMI), body fat mass index (BFMI), percent of body fat (PBF), percent skeletal muscle mass (PSMM), index of hypokinezia (IH), skeletal muscle mass index (SMMI), protein mass index (PMI), and fat-free mass index (FFMI); and four physical fitness measures: a 3.2 km run, a 2-minute push-up, 2-minute sit-up and estimated physical fitness score (EPFS) were correlated, followed by the regression analysis for causal relationship between body composition and EPFS. Running 3.2 km test correlated to BMI, PBF, PSMM, BFMI, and SMMI (r = 0.274, 0.250, -0.234, 0.311, p<0.01, respectively); 2-minute push-up correlated to PBF, PSMM, BFMI, SMMI, PMI, IH, and FFMI (r = -0.413, 0.436, -0.375, 0.221, 0.231, -0.411, 0.261, p<0.01, respectively); 2-minute sit-up correlated to PBF, PSMM, BFMI, and IH (r = -0.237, 0.250, -0.236, -0.218, p<0.01, respectively); and EPFS correlated to BMI, FFMI, PBF, PSMM, BFMI, and IH (r = -0.200, 0.168, p<0.05, and r = -0.369, 0.378, 0.376, -0.317, p <0.01, respectively). Two models of predictions were extracted: 1) PBF, BFMI, PMI and FFMI (R2 = 0.250, p<0.001); 2) PBF, BFMI and PMI (R2 = 0.244, p<0.001). Obtained prediction models may be a promising screening method of a POs’ fitness, when conducting the physical tests is not possible or safe (obese and injured POs or bad weather conditions).

UR - http://www.scopus.com/inward/record.url?scp=85059326196&partnerID=8YFLogxK

U2 - 10.4067/S0717-95022018000401407

DO - 10.4067/S0717-95022018000401407

M3 - Article

VL - 36

SP - 1407

EP - 1412

JO - International Journal of Morphology

JF - International Journal of Morphology

SN - 0717-9367

IS - 4

ER -