TY - JOUR
T1 - The effect of ankle bracing on landing biomechanics in female netballers
AU - Mason-Mackay, Anna Ruth
AU - Whatman, Chris
AU - Reid, Duncan
AU - Lorimer, Anna
PY - 2016/7/1
Y1 - 2016/7/1
N2 - Objectives: Investigate the impact of lace-up ankle braces on landing biomechanics. Design: Within-subject repeated measures. Participants completed a drop jump, drop land, and netball-specific task in braced and unbraced conditions. Setting: Biomechanical research laboratory. Participants: Twenty female high school netballers. Main outcome measures: Leg, knee, and ankle stiffness, knee/ankle stiffness ratio, knee and ankle sagittal excursion, peak vertical ground reaction force, time-to-peak vertical ground reaction force, and loading rate. Results: In the brace condition leg stiffness increased bilaterally during the drop land (ES = 0.21, 0.22), ankle stiffness increased bilaterally during the drop jump (ES = 0.37, 0.29) and drop land (ES = 0.40, 0.60), and knee/ankle stiffness ratio decreased in all three tasks (ES = -0.22 to -0.45). Ankle sagittal excursion decreased bilaterally during the drop jump (ES = -0.35, -0.53) and drop land (ES = -0.23, -0.46), and decreased in the lead limb during the netball jump (ES = -0.36). Knee excursion decreased bilaterally during the drop jump (ES = -0.36, -0.40) and in the lead limb during netball task (ES = -0.59). Lead limb TTP was greater during the netball jump (ES = 0.41). Conclusions: Lace-up ankle braces may increase leg and joint stiffness and reduce joint excursion during landing but do not appear to affect landing forces. The observed effect on landing biomechanics may predispose young netballers to injury.
AB - Objectives: Investigate the impact of lace-up ankle braces on landing biomechanics. Design: Within-subject repeated measures. Participants completed a drop jump, drop land, and netball-specific task in braced and unbraced conditions. Setting: Biomechanical research laboratory. Participants: Twenty female high school netballers. Main outcome measures: Leg, knee, and ankle stiffness, knee/ankle stiffness ratio, knee and ankle sagittal excursion, peak vertical ground reaction force, time-to-peak vertical ground reaction force, and loading rate. Results: In the brace condition leg stiffness increased bilaterally during the drop land (ES = 0.21, 0.22), ankle stiffness increased bilaterally during the drop jump (ES = 0.37, 0.29) and drop land (ES = 0.40, 0.60), and knee/ankle stiffness ratio decreased in all three tasks (ES = -0.22 to -0.45). Ankle sagittal excursion decreased bilaterally during the drop jump (ES = -0.35, -0.53) and drop land (ES = -0.23, -0.46), and decreased in the lead limb during the netball jump (ES = -0.36). Knee excursion decreased bilaterally during the drop jump (ES = -0.36, -0.40) and in the lead limb during netball task (ES = -0.59). Lead limb TTP was greater during the netball jump (ES = 0.41). Conclusions: Lace-up ankle braces may increase leg and joint stiffness and reduce joint excursion during landing but do not appear to affect landing forces. The observed effect on landing biomechanics may predispose young netballers to injury.
UR - http://www.scopus.com/inward/record.url?scp=84966710092&partnerID=8YFLogxK
U2 - 10.1016/j.ptsp.2015.11.002
DO - 10.1016/j.ptsp.2015.11.002
M3 - Article
C2 - 27325534
AN - SCOPUS:84966710092
SN - 1466-853X
VL - 20
SP - 13
EP - 18
JO - Physical Therapy in Sport
JF - Physical Therapy in Sport
ER -