TY - JOUR
T1 - Structural and enzyme activity studies demonstrate that aryl substituted 2,3-butadienamine analogs inactivate Arthrobacter globiformis amine oxidase (AGAO) by chemical derivatization of the 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor
AU - Ernberg, Karin
AU - Zhong, Bo
AU - Ko, Kristin
AU - Miller, Larry
AU - Nguyen, Yen Hoang Le
AU - Sayre, Lawrence M.
AU - Guss, J. Mitchell
AU - Lee, Irene
PY - 2011/5
Y1 - 2011/5
N2 - Copper amine oxidases (CAOs) are a family of redox active enzymes containing a 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor generated from post translational modification of an active site tyrosine residue. The Arthrobacter globiformis amine oxidase (AGAO) has been widely used as a model to guide the design and development of selective inhibitors of CAOs. In this study, two aryl 2,3-butadienamine analogs, racemic 5-phenoxy-2,3- pentadienylamine (POPDA) and racemic 6-phenyl-2,3-hexadienylamine (PHDA), were synthesized and evaluated as mechanism-based inactivators of AGAO. Crystal structures show that both compounds form a covalent adduct with the amino group of the substrate-reduced TPQ, and that the chemical structures of the rac-PHDA and rac-POPDA modified TPQ differ by the allenic carbon that is attached to the cofactor. A chemical mechanism accounting for the formation of the respective TPQ derivative is proposed. Under steady-state conditions, no recovery of enzyme activity is detected when AGAO pre-treated with rac-PHDA or rac-POPDA is diluted with excess amount of the benzylamine substrate (100-fold K m). Comparing the IC50 values further reveals that the phenoxy substituent in POPDA offers an approximately 4-fold increase in inhibition potency, which can be attributed to a favourable binding interaction between the oxygen atom in the phenoxy group and the active site of AGAO as revealed by crystallographic studies. This hypothesis is corroborated by the observed > 3-fold higher partition ratio of PHDA compared to POPDA. Taken together, the results presented in this study reveal the mechanism by which aryl 2,3-butadienamines act as mechanism-based inhibitors of AGAO, and the potency of enzyme inactivation could be fine-tuned by optimizing binding interaction between the aryl substituent and the enzyme active site.
AB - Copper amine oxidases (CAOs) are a family of redox active enzymes containing a 2,4,5-trihydroxyphenylalanine quinone (TPQ) cofactor generated from post translational modification of an active site tyrosine residue. The Arthrobacter globiformis amine oxidase (AGAO) has been widely used as a model to guide the design and development of selective inhibitors of CAOs. In this study, two aryl 2,3-butadienamine analogs, racemic 5-phenoxy-2,3- pentadienylamine (POPDA) and racemic 6-phenyl-2,3-hexadienylamine (PHDA), were synthesized and evaluated as mechanism-based inactivators of AGAO. Crystal structures show that both compounds form a covalent adduct with the amino group of the substrate-reduced TPQ, and that the chemical structures of the rac-PHDA and rac-POPDA modified TPQ differ by the allenic carbon that is attached to the cofactor. A chemical mechanism accounting for the formation of the respective TPQ derivative is proposed. Under steady-state conditions, no recovery of enzyme activity is detected when AGAO pre-treated with rac-PHDA or rac-POPDA is diluted with excess amount of the benzylamine substrate (100-fold K m). Comparing the IC50 values further reveals that the phenoxy substituent in POPDA offers an approximately 4-fold increase in inhibition potency, which can be attributed to a favourable binding interaction between the oxygen atom in the phenoxy group and the active site of AGAO as revealed by crystallographic studies. This hypothesis is corroborated by the observed > 3-fold higher partition ratio of PHDA compared to POPDA. Taken together, the results presented in this study reveal the mechanism by which aryl 2,3-butadienamines act as mechanism-based inhibitors of AGAO, and the potency of enzyme inactivation could be fine-tuned by optimizing binding interaction between the aryl substituent and the enzyme active site.
UR - http://www.scopus.com/inward/record.url?scp=79955605060&partnerID=8YFLogxK
U2 - 10.1016/j.bbapap.2010.12.016
DO - 10.1016/j.bbapap.2010.12.016
M3 - Article
C2 - 21215824
AN - SCOPUS:79955605060
SN - 1570-9639
VL - 1814
SP - 638
EP - 646
JO - Biochimica et Biophysica Acta - Proteins and Proteomics
JF - Biochimica et Biophysica Acta - Proteins and Proteomics
IS - 5
ER -