Role of capillary pericytes in the integration of spontaneous Ca2+ transients in the suburothelial microvasculature in situ of the mouse bladder

Hikaru Hashitani*, Retsu Mitsui, Kyoko Miwa-Nishimura, Michelle Lam

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

13 Citations (Scopus)

Abstract

Key points: In the bladder suburothelial microvasculature, pericytes in different microvascular segments develop spontaneous Ca2+ transients with or without associated constrictions. Spontaneous Ca2+ transients in pericytes of all microvascular segments primarily rely on the cycles of Ca2+ uptake and release by the sarco- and endoplasmic reticulum. The synchrony of spontaneous Ca2+ transients in capillary pericytes exclusively relies on the spread of depolarizations resulting from the opening of Ca2+-activated chloride channels (CaCCs) via gap junctions. CaCC-dependent depolarizations further activate L-type voltage-dependent Ca2+ channels as required for the synchrony of Ca2+ transients in pericytes of pre-capillary arterioles, post-capillary venules and venules. Capillary pericytes may drive spontaneous Ca2+ transients in pericytes within the suburothelial microvascular network by sending CaCC-dependent depolarizations via gap junctions. Abstract: Mural cells in the microvasculature of visceral organs develop spontaneous Ca2+ transients. However, the mechanisms underlying the integration of these Ca2+ transients within a microvascular unit remain to be clarified. In the present study, the origin of spontaneous Ca2+ transients and their propagation in the bladder suburothelial microvasculature were explored. Cal-520 fluorescence Ca2+ imaging and immunohistochemistry were carried out on mural cells using mice expressing red fluorescent protein (DsRed) under control of the NG2 promotor. NG2(+) pericytes in both pre-capillary arterioles (PCAs) and capillaries developed synchronous spontaneous Ca2+ transients. By contrast, although NG2-DsRed also labelled arteriolar smooth muscle cells, these cells remained quiescent. Both NG2(+) pericytes in post-capillary venules (PCVs) and NG2(–) venular pericytes exhibited propagated Ca2+ transients. L-type voltage-dependent Ca2+ channel (LVDCC) blockade with nifedipine prevented Ca2+ transients or disrupted their synchrony in PCA, PCV and venular pericytes without dis-synchronizing Ca2+ transients in capillary pericytes. Blockade of gap junctions with carbenoxolone or Ca2+-activated chloride channels (CaCCs) with 4,4′-diisothiocyanato-2,2′-stilbenedisulphonic acid disodium salt prevented Ca2+ transients in PCA and venular pericytes and disrupted the synchrony of Ca2+ transients in capillary and PCV pericytes. Spontaneous Ca2+ transients in pericytes of all microvascular segments were abolished or suppressed by cyclopiazonic acid, caffeine or tetracaine. The synchrony of Ca2+ transients in capillary pericytes arising from spontaneous Ca2+ release from the sarco- and endoplasmic reticulum appears to rely exclusively on CaCC activation, whereas subsequent LVDCC activation is required for the synchrony of Ca2+ transients in pericytes of other microvascular segments. Capillary pericytes may drive spontaneous activity in the suburothelial microvascular unit to facilitate capillary perfusion.

Original languageEnglish
Pages (from-to)3531-3552
Number of pages22
JournalJournal of Physiology
Volume596
Issue number16
DOIs
Publication statusPublished - 15 Aug 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Role of capillary pericytes in the integration of spontaneous Ca2+ transients in the suburothelial microvasculature in situ of the mouse bladder'. Together they form a unique fingerprint.

Cite this