TY - JOUR
T1 - Regulation of the voltage-gated K+ channels KCNQ2/3 and KCNQ3/5 by ubiquitination
T2 - Novel role for Nedd4-2
AU - Ekberg, Jenny
AU - Schuetz, Friderike
AU - Boase, Natasha A.
AU - Conroy, Sarah Jane
AU - Manning, Jantina
AU - Kumar, Sharad
AU - Poronnik, Philip
AU - Adams, David J.
PY - 2007/4/20
Y1 - 2007/4/20
N2 - The muscarine-sensitive K+ current (M-current) stabilizes the resting membrane potential in neurons, thus limiting neuronal excitability. The M-current is mediated by heteromeric channels consisting of KCNQ3 subunits in association with either KCNQ2 or KCNQ5 subunits. The role of KCNQ2/3/5 in the regulation of neuronal excitability is well established; however, little is known about the mechanisms that regulate the cell surface expression of these channels. Ubiquitination by the Nedd4/Nedd4-2 ubiquitin ligases is known to regulate a number of membrane ion channels and transporters. In this study, we investigated whether Nedd4/Nedd4-2 could regulate KCNQ2/3/5 channels. We found that the amplitude of the K+ currents mediated by KCNQ2/3 and KCNQ3/5 were reduced by Nedd4-2 (but not Nedd4) in a Xenopus oocyte expression system. Deletion experiments showed that the C-terminal region of the KCNQ3 subunit is required for the Nedd4-2-mediated regulation of the heteromeric channels. Glutathione S-transferase fusion pulldowns and co-immunoprecipitations demonstrated a direct interaction between KCNQ2/3 and Nedd4-2. Furthermore, Nedd4-2 could ubiquitinate KCNQ2/3 in transfected cells. Taken together, these data suggest that Nedd4-2 is potentially an important regulator of M-current activity in the nervous system.
AB - The muscarine-sensitive K+ current (M-current) stabilizes the resting membrane potential in neurons, thus limiting neuronal excitability. The M-current is mediated by heteromeric channels consisting of KCNQ3 subunits in association with either KCNQ2 or KCNQ5 subunits. The role of KCNQ2/3/5 in the regulation of neuronal excitability is well established; however, little is known about the mechanisms that regulate the cell surface expression of these channels. Ubiquitination by the Nedd4/Nedd4-2 ubiquitin ligases is known to regulate a number of membrane ion channels and transporters. In this study, we investigated whether Nedd4/Nedd4-2 could regulate KCNQ2/3/5 channels. We found that the amplitude of the K+ currents mediated by KCNQ2/3 and KCNQ3/5 were reduced by Nedd4-2 (but not Nedd4) in a Xenopus oocyte expression system. Deletion experiments showed that the C-terminal region of the KCNQ3 subunit is required for the Nedd4-2-mediated regulation of the heteromeric channels. Glutathione S-transferase fusion pulldowns and co-immunoprecipitations demonstrated a direct interaction between KCNQ2/3 and Nedd4-2. Furthermore, Nedd4-2 could ubiquitinate KCNQ2/3 in transfected cells. Taken together, these data suggest that Nedd4-2 is potentially an important regulator of M-current activity in the nervous system.
UR - http://www.scopus.com/inward/record.url?scp=34249688622&partnerID=8YFLogxK
U2 - 10.1074/jbc.M609385200
DO - 10.1074/jbc.M609385200
M3 - Article
C2 - 17322297
AN - SCOPUS:34249688622
SN - 0021-9258
VL - 282
SP - 12135
EP - 12142
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 16
ER -