Abstract
This study aimed to quantify how acute hypoxia impacts firing characteristics of biceps brachii motor units (MUs) during sustained isometric elbow flexions. MU data were extracted from surface electromyography (EMG) during 25% maximal voluntary contractions (MVC) in 10 healthy subjects (age 22 ± 1 yr). Blood oxygen saturation (SpO2) was then stabilized at 80% by reducing 1% of the fraction of inspired oxygen every 3 min for 35 min. MU data were once again collected 1 h and 2 h following the 35-min desaturation phase. Although MVC remained unaffected during 2 h of 80% SpO2, subject-specific changes in MU firing rate were observed. Four of 10 subjects exhibited a decrease in firing rate 1 h postdesaturation (12 ± 11%) and 2 h postdesaturation (16 ± 12%), whereas 6 of 10 subjects exhibited an increase in firing rate 1 h (9 ± 6%) and 2 h (9 ± 4%) postdesaturation. These bidirectional changes in firing rate were strongly correlated to the desaturation phase and the subjects' SpO2 sensitivity to oxygen availability, where subjects who had decreased firing rates reached the target SpO2 20 min into the desaturation phase (R2 = 0.90-0.98) and those who had increased firing rates reached the target SpO2 35 min into the desaturation phase (R2 = 0.87-0.98). It is unlikely that a single mechanism accounted for these subject-specific changes in firing rate. Instead, differences in intrinsic properties of the neurons, afferent input to the motoneurons, neuromodulators, and sympathetic nerve activity may exist between groups.
Original language | English |
---|---|
Pages (from-to) | 1664-1671 |
Number of pages | 7 |
Journal | Journal of Neurophysiology |
Volume | 121 |
Issue number | 5 |
DOIs | |
Publication status | Published - 13 Mar 2019 |
Externally published | Yes |