Redefining myeloid cell subsets in murine spleen

Research output: Contribution to journalArticleResearchpeer-review

20 Citations (Scopus)

Abstract

Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed "L-DC" in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11bhiCD11cloMHCII-Ly6C-Ly6G- subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11bhiCD11cloMHCII-Ly6CloLy6G- cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6Clo and Ly6Chi monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11bhiCD11cloMHCII-Ly6C-Ly6G- cells, which are CD43+, Siglec-F- and CD115-. Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.

Original languageEnglish
Article number652
JournalFrontiers in Immunology
Volume6
Issue numberJAN
DOIs
Publication statusPublished - 11 Jan 2016

Fingerprint

Myeloid Cells
Dendritic Cells
Spleen
Monocytes
Sialic Acid Binding Immunoglobulin-like Lectins
Phenotype
Granulocyte-Macrophage Colony-Stimulating Factor
Eosinophils
Intercellular Signaling Peptides and Proteins
Transcription Factors

Cite this

@article{84dd3541e0434469adf7f022db9c49a7,
title = "Redefining myeloid cell subsets in murine spleen",
abstract = "Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed {"}L-DC{"} in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11bhiCD11cloMHCII-Ly6C-Ly6G- subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11bhiCD11cloMHCII-Ly6CloLy6G- cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6Clo and Ly6Chi monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11bhiCD11cloMHCII-Ly6C-Ly6G- cells, which are CD43+, Siglec-F- and CD115-. Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.",
author = "Hey, {Ying Ying} and Tan, {Jonathan K H} and O'Neill, {Helen C.}",
year = "2016",
month = "1",
day = "11",
doi = "10.3389/fimmu.2015.00652",
language = "English",
volume = "6",
journal = "Frontiers in Immunology",
issn = "1664-3224",
publisher = "Frontiers Media S.A.",
number = "JAN",

}

Redefining myeloid cell subsets in murine spleen. / Hey, Ying Ying; Tan, Jonathan K H; O'Neill, Helen C.

In: Frontiers in Immunology, Vol. 6, No. JAN, 652, 11.01.2016.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Redefining myeloid cell subsets in murine spleen

AU - Hey, Ying Ying

AU - Tan, Jonathan K H

AU - O'Neill, Helen C.

PY - 2016/1/11

Y1 - 2016/1/11

N2 - Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed "L-DC" in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11bhiCD11cloMHCII-Ly6C-Ly6G- subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11bhiCD11cloMHCII-Ly6CloLy6G- cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6Clo and Ly6Chi monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11bhiCD11cloMHCII-Ly6C-Ly6G- cells, which are CD43+, Siglec-F- and CD115-. Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.

AB - Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed "L-DC" in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11bhiCD11cloMHCII-Ly6C-Ly6G- subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11bhiCD11cloMHCII-Ly6CloLy6G- cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6Clo and Ly6Chi monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11bhiCD11cloMHCII-Ly6C-Ly6G- cells, which are CD43+, Siglec-F- and CD115-. Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.

UR - http://www.scopus.com/inward/record.url?scp=84958178339&partnerID=8YFLogxK

U2 - 10.3389/fimmu.2015.00652

DO - 10.3389/fimmu.2015.00652

M3 - Article

VL - 6

JO - Frontiers in Immunology

JF - Frontiers in Immunology

SN - 1664-3224

IS - JAN

M1 - 652

ER -