Quantification of accelerometer derived impacts associated with competitive games in National Collegiate Athletic Association division I college football players

Aaron D. Wellman, Sam C Coad, Grant C. Goulet, Christopher P McLellan

Research output: Contribution to journalArticleResearchpeer-review

13 Citations (Scopus)
26 Downloads (Pure)

Abstract

Wellman, AD, Coad, SC, Goulet, GC, and McLellan, CP. Quantification of accelerometer derived impacts associated with competitive games in National Collegiate Athletic Association division I college football players. J Strength Cond Res 31(2): 330-338, 2017-The aims of the present study were to (a) examine positional impact profiles of National Collegiate Athletic Association (NCAA) division I college football players using global positioning system (GPS) and integrated accelerometry (IA) technology and (b) determine if positional differences in impact profiles during competition exist within offensive and defensive teams. Thirty-three NCAA division I Football Bowl Subdivision players were monitored using GPS and IA (GPSports) during 12 regular season games throughout the 2014 season. Individual player data sets (n = 294) were divided into offensive and defensive teams, and positional subgroups. The intensity, number, and distribution of impact forces experienced by players during competition were recorded. Positional differences were found for the distribution of impacts within offensive and defensive teams. Wide receivers sustained more very light and light to moderate (5-6.5 G force) impacts than other position groups, whereas the running backs were involved in more severe (>10 G force) impacts than all offensive position groups, with the exception of the quarterbacks (p ≤ 0.05). The defensive back and linebacker groups were subject to more very light (5.0-6.0 G force) impacts, and the defensive tackle group sustained more heavy and very heavy (7.1-10 G force) impacts than other defensive positions (p ≤ 0.05). Data from the present study provide novel quantification of positional impact profiles related to the physical demands of college football games and highlight the need for position-specific monitoring and training in the preparation for the impact loads experienced during NCAA division I football competition.

Original languageEnglish
Pages (from-to)330-338
Number of pages9
JournalJournal of Strength and Conditioning Research
Volume31
Issue number2
DOIs
Publication statusPublished - Feb 2017

Fingerprint

Football
Sports
Gravitation
Accelerometry
Geographic Information Systems
Light
Running
Technology

Cite this

@article{dcbd040efe5f4344b21633fe5412cb28,
title = "Quantification of accelerometer derived impacts associated with competitive games in National Collegiate Athletic Association division I college football players",
abstract = "Wellman, AD, Coad, SC, Goulet, GC, and McLellan, CP. Quantification of accelerometer derived impacts associated with competitive games in National Collegiate Athletic Association division I college football players. J Strength Cond Res 31(2): 330-338, 2017-The aims of the present study were to (a) examine positional impact profiles of National Collegiate Athletic Association (NCAA) division I college football players using global positioning system (GPS) and integrated accelerometry (IA) technology and (b) determine if positional differences in impact profiles during competition exist within offensive and defensive teams. Thirty-three NCAA division I Football Bowl Subdivision players were monitored using GPS and IA (GPSports) during 12 regular season games throughout the 2014 season. Individual player data sets (n = 294) were divided into offensive and defensive teams, and positional subgroups. The intensity, number, and distribution of impact forces experienced by players during competition were recorded. Positional differences were found for the distribution of impacts within offensive and defensive teams. Wide receivers sustained more very light and light to moderate (5-6.5 G force) impacts than other position groups, whereas the running backs were involved in more severe (>10 G force) impacts than all offensive position groups, with the exception of the quarterbacks (p ≤ 0.05). The defensive back and linebacker groups were subject to more very light (5.0-6.0 G force) impacts, and the defensive tackle group sustained more heavy and very heavy (7.1-10 G force) impacts than other defensive positions (p ≤ 0.05). Data from the present study provide novel quantification of positional impact profiles related to the physical demands of college football games and highlight the need for position-specific monitoring and training in the preparation for the impact loads experienced during NCAA division I football competition.",
author = "Wellman, {Aaron D.} and Coad, {Sam C} and Goulet, {Grant C.} and McLellan, {Christopher P}",
year = "2017",
month = "2",
doi = "10.1519/JSC.0000000000001506",
language = "English",
volume = "31",
pages = "330--338",
journal = "Journal of Strength and Conditioning Research",
issn = "1064-8011",
publisher = "Lippincott Williams & Wilkins",
number = "2",

}

Quantification of accelerometer derived impacts associated with competitive games in National Collegiate Athletic Association division I college football players. / Wellman, Aaron D.; Coad, Sam C; Goulet, Grant C.; McLellan, Christopher P.

In: Journal of Strength and Conditioning Research, Vol. 31, No. 2, 02.2017, p. 330-338.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Quantification of accelerometer derived impacts associated with competitive games in National Collegiate Athletic Association division I college football players

AU - Wellman, Aaron D.

AU - Coad, Sam C

AU - Goulet, Grant C.

AU - McLellan, Christopher P

PY - 2017/2

Y1 - 2017/2

N2 - Wellman, AD, Coad, SC, Goulet, GC, and McLellan, CP. Quantification of accelerometer derived impacts associated with competitive games in National Collegiate Athletic Association division I college football players. J Strength Cond Res 31(2): 330-338, 2017-The aims of the present study were to (a) examine positional impact profiles of National Collegiate Athletic Association (NCAA) division I college football players using global positioning system (GPS) and integrated accelerometry (IA) technology and (b) determine if positional differences in impact profiles during competition exist within offensive and defensive teams. Thirty-three NCAA division I Football Bowl Subdivision players were monitored using GPS and IA (GPSports) during 12 regular season games throughout the 2014 season. Individual player data sets (n = 294) were divided into offensive and defensive teams, and positional subgroups. The intensity, number, and distribution of impact forces experienced by players during competition were recorded. Positional differences were found for the distribution of impacts within offensive and defensive teams. Wide receivers sustained more very light and light to moderate (5-6.5 G force) impacts than other position groups, whereas the running backs were involved in more severe (>10 G force) impacts than all offensive position groups, with the exception of the quarterbacks (p ≤ 0.05). The defensive back and linebacker groups were subject to more very light (5.0-6.0 G force) impacts, and the defensive tackle group sustained more heavy and very heavy (7.1-10 G force) impacts than other defensive positions (p ≤ 0.05). Data from the present study provide novel quantification of positional impact profiles related to the physical demands of college football games and highlight the need for position-specific monitoring and training in the preparation for the impact loads experienced during NCAA division I football competition.

AB - Wellman, AD, Coad, SC, Goulet, GC, and McLellan, CP. Quantification of accelerometer derived impacts associated with competitive games in National Collegiate Athletic Association division I college football players. J Strength Cond Res 31(2): 330-338, 2017-The aims of the present study were to (a) examine positional impact profiles of National Collegiate Athletic Association (NCAA) division I college football players using global positioning system (GPS) and integrated accelerometry (IA) technology and (b) determine if positional differences in impact profiles during competition exist within offensive and defensive teams. Thirty-three NCAA division I Football Bowl Subdivision players were monitored using GPS and IA (GPSports) during 12 regular season games throughout the 2014 season. Individual player data sets (n = 294) were divided into offensive and defensive teams, and positional subgroups. The intensity, number, and distribution of impact forces experienced by players during competition were recorded. Positional differences were found for the distribution of impacts within offensive and defensive teams. Wide receivers sustained more very light and light to moderate (5-6.5 G force) impacts than other position groups, whereas the running backs were involved in more severe (>10 G force) impacts than all offensive position groups, with the exception of the quarterbacks (p ≤ 0.05). The defensive back and linebacker groups were subject to more very light (5.0-6.0 G force) impacts, and the defensive tackle group sustained more heavy and very heavy (7.1-10 G force) impacts than other defensive positions (p ≤ 0.05). Data from the present study provide novel quantification of positional impact profiles related to the physical demands of college football games and highlight the need for position-specific monitoring and training in the preparation for the impact loads experienced during NCAA division I football competition.

U2 - 10.1519/JSC.0000000000001506

DO - 10.1519/JSC.0000000000001506

M3 - Article

VL - 31

SP - 330

EP - 338

JO - Journal of Strength and Conditioning Research

JF - Journal of Strength and Conditioning Research

SN - 1064-8011

IS - 2

ER -