TY - JOUR
T1 - Phasic activity of urinary bladder smooth muscle in the streptozotocin-induced diabetic rat
T2 - Effect of potassium channel modulators
AU - Vahabi, Bahareh
AU - Lawson, Kim
AU - McKay, Neil G.
AU - Sellers, Donna J.
PY - 2011/6/25
Y1 - 2011/6/25
N2 - Increased phasic activity in the bladder smooth muscle of animal models and patients with detrusor overactivity has been suggested to underlie the pathophysiology of overactive bladder. Potassium (K
+) channels are key regulators of bladder smooth muscle tone and thus may play a role in this altered phasic activity. In this study the effects of K
+ channel modulators on the phasic activity of bladder strips from the streptozotocin-induced diabetic rat model of bladder dysfunction were investigated. Bladder strips from rats 1 week following streptozotocin administration and age-matched controls were mounted in tissue baths at 37 °C and the effects of K
+ channel modulators on resting basal tension or phasic activity induced by a low concentration of carbachol (0.5 μM) were investigated. Activation of BK
Ca channels by NS1619 had a minor inhibitory effect on carbachol-induced phasic activity of bladder strips from control and diabetic rats, and significantly inhibited amplitude only at 30 μM. Activation of K
ATP channels by cromakalim inhibited the frequency of carbachol-induced phasic activity of bladder strips, although strips from diabetic rats showed a trend towards being less sensitive to cromakalim. The BK
Ca channel blocker iberiotoxin was able to induce phasic activity in resting tissues, with diabetic bladder strips demonstrating significantly enhanced phasic activity compared to controls. In contrast, inhibition of SK
Ca and K
ATP channels did not induce phasic activity in resting tissues. In conclusion, responses of diabetic rat bladder to BK
Ca and K
ATP channel modulators are altered, suggesting altered function and/or expression of channels which may contribute to bladder dysfunction in this model.
AB - Increased phasic activity in the bladder smooth muscle of animal models and patients with detrusor overactivity has been suggested to underlie the pathophysiology of overactive bladder. Potassium (K
+) channels are key regulators of bladder smooth muscle tone and thus may play a role in this altered phasic activity. In this study the effects of K
+ channel modulators on the phasic activity of bladder strips from the streptozotocin-induced diabetic rat model of bladder dysfunction were investigated. Bladder strips from rats 1 week following streptozotocin administration and age-matched controls were mounted in tissue baths at 37 °C and the effects of K
+ channel modulators on resting basal tension or phasic activity induced by a low concentration of carbachol (0.5 μM) were investigated. Activation of BK
Ca channels by NS1619 had a minor inhibitory effect on carbachol-induced phasic activity of bladder strips from control and diabetic rats, and significantly inhibited amplitude only at 30 μM. Activation of K
ATP channels by cromakalim inhibited the frequency of carbachol-induced phasic activity of bladder strips, although strips from diabetic rats showed a trend towards being less sensitive to cromakalim. The BK
Ca channel blocker iberiotoxin was able to induce phasic activity in resting tissues, with diabetic bladder strips demonstrating significantly enhanced phasic activity compared to controls. In contrast, inhibition of SK
Ca and K
ATP channels did not induce phasic activity in resting tissues. In conclusion, responses of diabetic rat bladder to BK
Ca and K
ATP channel modulators are altered, suggesting altered function and/or expression of channels which may contribute to bladder dysfunction in this model.
UR - http://www.scopus.com/inward/record.url?scp=79956142003&partnerID=8YFLogxK
U2 - 10.1016/j.ejphar.2011.03.053
DO - 10.1016/j.ejphar.2011.03.053
M3 - Article
C2 - 21497590
AN - SCOPUS:79956142003
SN - 0014-2999
VL - 660
SP - 431
EP - 437
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
IS - 2-3
ER -