Performance of Commercial Dermatoscopic Systems That Incorporate Artificial Intelligence for the Identification of Melanoma in General Practice: A Systematic Review

Ian Miller, Nedeljka Rosic, Michael Stapelberg, Jeremy Hudson, Paul Coxon, James Furness, Joe Walsh, Mike Climstein*

*Corresponding author for this work

Research output: Contribution to journalReview articleResearchpeer-review

13 Downloads (Pure)

Abstract

Background: Cutaneous melanoma remains an increasing global public health burden, particularly in fair-skinned populations. Advancing technologies, particularly artificial intelligence (AI), may provide an additional tool for clinicians to help detect malignancies with a more accurate success rate. This systematic review aimed to report the performance metrics of commercially available convolutional neural networks (CNNs) tasked with detecting MM. Methods: A systematic literature search was performed using CINAHL, Medline, Scopus, ScienceDirect and Web of Science databases. Results: A total of 16 articles reporting MM were included in this review. The combined number of melanomas detected was 1160, and non-melanoma lesions were 33,010. The performance of market-approved technology and clinician performance for classifying melanoma was highly heterogeneous, with sensitivity ranging from 16.4 to 100.0%, specificity between 40.0 and 98.3% and accuracy between 44.0 and 92.0%. Less heterogeneity was observed when clinicians worked in unison with AI, with sensitivity ranging between 83.3 and 100.0%, specificity between 83.7 and 87.3%, and accuracy between 86.4 and 86.9%. Conclusion: Instead of focusing on the performance of AI versus clinicians for classifying melanoma, more consistent performance has been obtained when clinicians’ work is supported by AI, facilitating management decisions and improving health outcomes.

Original languageEnglish
Article number1443
Pages (from-to)1-18
Number of pages18
JournalCancers
Volume16
Issue number7
DOIs
Publication statusPublished - Apr 2024

Fingerprint

Dive into the research topics of 'Performance of Commercial Dermatoscopic Systems That Incorporate Artificial Intelligence for the Identification of Melanoma in General Practice: A Systematic Review'. Together they form a unique fingerprint.

Cite this