Novel ceramic bone replacement material CeraBall® seeded with human mesenchymal stem cells

Timothy Douglas*, Qin Liu, Andreas Humpe, Jörg Wiltfang, Sureshan Sivananthan, Patrick H. Warnke

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

10 Citations (Scopus)

Abstract

Objectives: Hydroxyapatite (HA) and tricalcium phosphate (TCP) are two very common ceramic materials for bone replacement. A recently developed material for bone replacement is CeraBall®, which is a mixed HA-TCP scaffold available as porous spherical scaffolds of diameter 4 and 6 mm. Before their use as bone replacement materials in vivo, in vitro testing of these scaffolds is necessary. The goal of this study was to characterise 4 and 6 mm CeraBall® scaffolds in vitro with a view to their future use as bone replacement materials. Materials and methods: The proliferation of human mesenchymal stromal cells (hMSCs) seeded on CeraBall® scaffolds was evaluated quantitatively using the WST [Water soluble tetrazolium ((4-[3-(4-Iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene disulfonate)] test and qualitatively by scanning electron microscopy (SEM). In addition, the standard MTT [(3-(4, 5-Dimenthylthiazol-2-Y1)-2, 5-Diphenyltetrazolium bromide)] biocompatibility test and cell vitality staining were performed using hMSCs. CeraBall® scaffolds were also tested for their mechanical properties. Results: SEM and WST test results showed that hMSCs proliferated on CeraBall® scaffolds over the course of 9 days. Proliferation was similar to that seen on tissue culture polystyrene (control). Cells showed a well-spread morphology and formed 'sheets' on the surface of scaffolds. Invasion of pores was observed. Good biocompatibility was demonstrated by MTT test results and cell vitality staining. Scaffolds of both 4 and 6 mm were able to withstand compressive loads of 5 N. Conclusions: CeraBall® scaffolds show good biocompatibility in vitro for hMSCs. This opens the way for in vivo applications.

Original languageEnglish
Pages (from-to)262-267
Number of pages6
JournalClinical Oral Implants Research
Volume21
Issue number3
DOIs
Publication statusPublished - Mar 2010

Fingerprint

Dive into the research topics of 'Novel ceramic bone replacement material CeraBall® seeded with human mesenchymal stem cells'. Together they form a unique fingerprint.

Cite this