New Insights Into Osteoclast Biology

Michelle Maree McDonald, Albert Sungsoo Kim, Bridie S Mulholland, Martina Rauner

Research output: Contribution to journalReview articleResearchpeer-review

62 Citations (Scopus)
4 Downloads (Pure)

Abstract

Osteoclasts are multinucleated cells that are characterized by their unique ability to resorb large quantities of bone. Therefore, they are frequently the target of therapeutic interventions to ameliorate bone loss. In an adult organism, osteoclasts derive from hematopoietic stem cells and differentiate into osteoclasts within a multistep process under the influence of macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). Historically, the osteoclast life cycle has been defined as linear, whereby lineage-committed mononuclear precursors fuse to generate multinucleated highly specialized and localized bone phagocytic cells, which then undergo apoptosis within weeks. Recent advances through lineage tracing, single cell RNA sequencing, parabiosis, and intravital imaging approaches have challenged this dogma, revealing they have greater longevity and the capacity to circulate and undergo cell recycling. Indeed, these new insights highlight that under homeostatic conditions very few incidences of osteoclast apoptosis occur. More importantly, as we revisit the formation and fate of the osteoclast, novel methods to target osteoclast biology in bone pathology and regeneration are emerging. This review briefly summarizes the historical life cycle of osteoclasts and highlights recent discoveries made through advanced methodologies, which have led to a paradigm shift in osteoclast biology. These findings are discussed in light of both existing and emerging bone targeted therapeutics, bone pathologies, and communication between osteoclasts and cells resident in bone or at distant sites. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Original languageEnglish
Article numbere10539
Pages (from-to)1-10
Number of pages10
JournalJBMR Plus
Volume5
Issue number9
DOIs
Publication statusPublished - Sept 2021
Externally publishedYes

Cite this