TY - JOUR
T1 - Neuronally selective μ-conotoxins from Conus striatus utilize an α-helical motif to target mammalian sodium channels
AU - Schroeder, Christina I.
AU - Ekberg, Jenny
AU - Nielsen, Katherine J.
AU - Adams, Denise
AU - Loughnan, Marion L.
AU - Thomas, Linda
AU - Adams, David J.
AU - Alewood, Paul F.
AU - Lewis, Richard J.
PY - 2008/8/1
Y1 - 2008/8/1
N2 - μ-Conotoxins are small peptide inhibitors of muscle and neuronal tetrodotoxin (TTX)-sensitive voltage-gated sodium channels (VGSCs). Here we report the isolation of μ-conotoxins SIIIA and SIIIB by 125I- TIIIA-guided fractionation of milked Conus striatus venom. SIIIA and SIIIB potently displaced 125I-TIIIA from native rat brain Nav1.2 (IC50 values 10 and 5 nM, respectively) and muscle Nav1.4 (IC50 values 60 and 3 nM, respectively) VGSCs, and both inhibited current through Xenopus oocyte-expressed Nav1.2 and Na v1.4. An alanine scan of SIIIA-(2-20), a pyroglutamate-truncated analogue with enhanced neuronal activity, revealed residues important for affinity and selectivity. Alanine replacement of the solvent-exposed Trp-12, Arg-14, His-16, Arg-18 resulted in large reductions in SIIIA-(2-20) affinity, with His-16 replacement affecting structure. In contrast, [D15A]SIIIA-(2-20) had significantly enhanced neuronal affinity (IC50 0.65 nM), while the double mutant [D15A/H16R]SIIIA-(2-20) showed greatest Nav1.2 versus 1.4 selectivity (136-fold). 1H NMR studies revealed that SIIIA adopted a single conformation in solution comprising a series of turns and an α-helical motif across residues 11-16 that is not found in larger μ-conotoxins. The structure of SIIIA provides a new structural template for the development of neuronally selective inhibitors of TTX-sensitive VGSCs based on the smaller μ-conotoxin pharmacophore.
AB - μ-Conotoxins are small peptide inhibitors of muscle and neuronal tetrodotoxin (TTX)-sensitive voltage-gated sodium channels (VGSCs). Here we report the isolation of μ-conotoxins SIIIA and SIIIB by 125I- TIIIA-guided fractionation of milked Conus striatus venom. SIIIA and SIIIB potently displaced 125I-TIIIA from native rat brain Nav1.2 (IC50 values 10 and 5 nM, respectively) and muscle Nav1.4 (IC50 values 60 and 3 nM, respectively) VGSCs, and both inhibited current through Xenopus oocyte-expressed Nav1.2 and Na v1.4. An alanine scan of SIIIA-(2-20), a pyroglutamate-truncated analogue with enhanced neuronal activity, revealed residues important for affinity and selectivity. Alanine replacement of the solvent-exposed Trp-12, Arg-14, His-16, Arg-18 resulted in large reductions in SIIIA-(2-20) affinity, with His-16 replacement affecting structure. In contrast, [D15A]SIIIA-(2-20) had significantly enhanced neuronal affinity (IC50 0.65 nM), while the double mutant [D15A/H16R]SIIIA-(2-20) showed greatest Nav1.2 versus 1.4 selectivity (136-fold). 1H NMR studies revealed that SIIIA adopted a single conformation in solution comprising a series of turns and an α-helical motif across residues 11-16 that is not found in larger μ-conotoxins. The structure of SIIIA provides a new structural template for the development of neuronally selective inhibitors of TTX-sensitive VGSCs based on the smaller μ-conotoxin pharmacophore.
UR - http://www.scopus.com/inward/record.url?scp=52049126211&partnerID=8YFLogxK
U2 - 10.1074/jbc.M802852200
DO - 10.1074/jbc.M802852200
M3 - Article
C2 - 18522941
AN - SCOPUS:52049126211
SN - 0021-9258
VL - 283
SP - 21621
EP - 21628
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 31
ER -