TY - JOUR
T1 - Neural Correlates of Temporal Complexity and Synchrony during Audiovisual Correspondence Detection
AU - Baumann, Oliver
AU - Vromen, Joyce M G
AU - Cheung, Allen
AU - McFadyen, Jessica
AU - Ren, Yudan
AU - Guo, Christine C
PY - 2018/1/23
Y1 - 2018/1/23
N2 - We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection.
AB - We often perceive real-life objects as multisensory cues through space and time. A key challenge for audiovisual integration is to match neural signals that not only originate from different sensory modalities but also that typically reach the observer at slightly different times. In humans, complex, unpredictable audiovisual streams lead to higher levels of perceptual coherence than predictable, rhythmic streams. In addition, perceptual coherence for complex signals seems less affected by increased asynchrony between visual and auditory modalities than for simple signals. Here, we used functional magnetic resonance imaging to determine the human neural correlates of audiovisual signals with different levels of temporal complexity and synchrony. Our study demonstrated that greater perceptual asynchrony and lower signal complexity impaired performance in an audiovisual coherence-matching task. Differences in asynchrony and complexity were also underpinned by a partially different set of brain regions. In particular, our results suggest that, while regions in the dorsolateral prefrontal cortex (DLPFC) were modulated by differences in memory load due to stimulus asynchrony, areas traditionally thought to be involved in speech production and recognition, such as the inferior frontal and superior temporal cortex, were modulated by the temporal complexity of the audiovisual signals. Our results, therefore, indicate specific processing roles for different subregions of the fronto-temporal cortex during audiovisual coherence detection.
UR - http://www.scopus.com/inward/record.url?scp=85040973650&partnerID=8YFLogxK
U2 - 10.1523/ENEURO.0294-17.2018
DO - 10.1523/ENEURO.0294-17.2018
M3 - Article
C2 - 29354682
SN - 2373-2822
VL - 5
JO - eNeuro
JF - eNeuro
IS - 1
M1 - e0294-17.2018
ER -