Load carriage does not reduce absolute mechanical power output but reduces agility in elite military police officers

Rodrigo Hoinatski*, Cintia de Lourdes Nahhas Rodacki, Rael Mateus de Oliveria Weimer, Elto Legnani, Keith Urbinati, Alexandre Cabral, Rob Marc Orr, Anderson Caetano Paulo

*Corresponding author for this work

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

Objectives:
The main objective of this study was to evaluate mean propulsive velocity (MPV), mean propulsive force (MPF) and mean propulsive power (MPP) in elite police officers under LOADED and UNLOADED conditions. The study also investigated the association of body composition and strength levels under the same load conditions.

Methods:
Twenty-one men from an elite unit in Brazil participated in the study, performing Smith machine half squats and an agility test. Dual energy X-ray absorptiometry measured body composition; a linear encoder measured MPV, MPF and MPP during the half squats; and a manual chronometer registered agility test performance.

Results:
The results showed that wearing and carrying occupational loads did not alter the squat exercise’s MPP, MPV and MPF but reduced the performance of relative MPP and agility (p < 0.05). The results also showed that MPP had a higher association with force (i.e., MPF and one-repetition maximum [1RM]) than velocity (i.e., MPV and agility) under the LOADED condition (p < 0.05). Among the body composition variables, only lean body mass was associated with MPP under the LOADED condition (p < 0.05).

Conclusion:
These findings suggest that load carriage does not reduce absolute mechanical power output, but reduces the relative MPP and agility in military police officers.
Original languageEnglish
Pages (from-to)1-9
Number of pages9
JournalInternational Journal of Occupational Safety and Ergonomics
DOIs
Publication statusPublished - 19 Jul 2024

Cite this