Load carriage: An integrated risk management approach

Robin M. Orr, Rodney R. Pope

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)
32 Downloads (Pure)

Abstract

Military load carriage (LC) gives rise to substantial risks to soldier health, tactical performance, and mission success. The aim of this article was to extract and synthesize the key findings of a series of LC research reports previously published by the authors. Five reviews and 6 studies were included, with key findings extracted and synthesized in tabulated and critical narrative form. The weight of a soldier's load is a source of risk for soldier's injuries and tactical task performance. The resulting level of risk is influenced by risk modifiers (like speed of march, terrain grade, and task type and duration) and risk controls (like administrative controls and physical conditioning). In the Australian context, these risk controls were limited, with soldiers carrying heavier loads than those mandated by doctrine and policy, and LC conditioning not meeting best practice. The diversity of LC contexts, combined with the influence of risk modifiers and risk controls, means that levels of risk associated with LC are not consistent and must be assessed on a case-by-case basis. Load weight and marching routes (terrains, gradients), distances, speed, and duration are all potentially treatable sources of LC-related risk. Potential risk treatments include not only commanders directly addressing these specific sources of risk to the extent feasible, on a case-by-case basis, when planning or conducting LC tasks but also improving administration controls (i.e., doctrine and policies) and personal protection (i.e., the physical conditioning of the soldier) as part of the hierarchy of controls. Practical application would involve commanders developing and implementing dedicated LC doctrine and policies and implementing and enforcing LC conditioning programs that meets best practice.

Original languageEnglish
Pages (from-to)S119-S128
JournalJournal of Strength and Conditioning Research
Volume29
DOIs
Publication statusPublished - 2015

Fingerprint

Risk Management
Military Personnel
Practice Guidelines
Weights and Measures
Task Performance and Analysis

Cite this

@article{a248ca70d64a4a94a91e7d0163583ff2,
title = "Load carriage: An integrated risk management approach",
abstract = "Military load carriage (LC) gives rise to substantial risks to soldier health, tactical performance, and mission success. The aim of this article was to extract and synthesize the key findings of a series of LC research reports previously published by the authors. Five reviews and 6 studies were included, with key findings extracted and synthesized in tabulated and critical narrative form. The weight of a soldier's load is a source of risk for soldier's injuries and tactical task performance. The resulting level of risk is influenced by risk modifiers (like speed of march, terrain grade, and task type and duration) and risk controls (like administrative controls and physical conditioning). In the Australian context, these risk controls were limited, with soldiers carrying heavier loads than those mandated by doctrine and policy, and LC conditioning not meeting best practice. The diversity of LC contexts, combined with the influence of risk modifiers and risk controls, means that levels of risk associated with LC are not consistent and must be assessed on a case-by-case basis. Load weight and marching routes (terrains, gradients), distances, speed, and duration are all potentially treatable sources of LC-related risk. Potential risk treatments include not only commanders directly addressing these specific sources of risk to the extent feasible, on a case-by-case basis, when planning or conducting LC tasks but also improving administration controls (i.e., doctrine and policies) and personal protection (i.e., the physical conditioning of the soldier) as part of the hierarchy of controls. Practical application would involve commanders developing and implementing dedicated LC doctrine and policies and implementing and enforcing LC conditioning programs that meets best practice.",
author = "Orr, {Robin M.} and Pope, {Rodney R.}",
year = "2015",
doi = "10.1519/JSC.0000000000001029",
language = "English",
volume = "29",
pages = "S119--S128",
journal = "Journal of Strength and Conditioning Research",
issn = "1064-8011",
publisher = "Lippincott Williams & Wilkins",

}

Load carriage : An integrated risk management approach. / Orr, Robin M.; Pope, Rodney R.

In: Journal of Strength and Conditioning Research, Vol. 29, 2015, p. S119-S128.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Load carriage

T2 - An integrated risk management approach

AU - Orr, Robin M.

AU - Pope, Rodney R.

PY - 2015

Y1 - 2015

N2 - Military load carriage (LC) gives rise to substantial risks to soldier health, tactical performance, and mission success. The aim of this article was to extract and synthesize the key findings of a series of LC research reports previously published by the authors. Five reviews and 6 studies were included, with key findings extracted and synthesized in tabulated and critical narrative form. The weight of a soldier's load is a source of risk for soldier's injuries and tactical task performance. The resulting level of risk is influenced by risk modifiers (like speed of march, terrain grade, and task type and duration) and risk controls (like administrative controls and physical conditioning). In the Australian context, these risk controls were limited, with soldiers carrying heavier loads than those mandated by doctrine and policy, and LC conditioning not meeting best practice. The diversity of LC contexts, combined with the influence of risk modifiers and risk controls, means that levels of risk associated with LC are not consistent and must be assessed on a case-by-case basis. Load weight and marching routes (terrains, gradients), distances, speed, and duration are all potentially treatable sources of LC-related risk. Potential risk treatments include not only commanders directly addressing these specific sources of risk to the extent feasible, on a case-by-case basis, when planning or conducting LC tasks but also improving administration controls (i.e., doctrine and policies) and personal protection (i.e., the physical conditioning of the soldier) as part of the hierarchy of controls. Practical application would involve commanders developing and implementing dedicated LC doctrine and policies and implementing and enforcing LC conditioning programs that meets best practice.

AB - Military load carriage (LC) gives rise to substantial risks to soldier health, tactical performance, and mission success. The aim of this article was to extract and synthesize the key findings of a series of LC research reports previously published by the authors. Five reviews and 6 studies were included, with key findings extracted and synthesized in tabulated and critical narrative form. The weight of a soldier's load is a source of risk for soldier's injuries and tactical task performance. The resulting level of risk is influenced by risk modifiers (like speed of march, terrain grade, and task type and duration) and risk controls (like administrative controls and physical conditioning). In the Australian context, these risk controls were limited, with soldiers carrying heavier loads than those mandated by doctrine and policy, and LC conditioning not meeting best practice. The diversity of LC contexts, combined with the influence of risk modifiers and risk controls, means that levels of risk associated with LC are not consistent and must be assessed on a case-by-case basis. Load weight and marching routes (terrains, gradients), distances, speed, and duration are all potentially treatable sources of LC-related risk. Potential risk treatments include not only commanders directly addressing these specific sources of risk to the extent feasible, on a case-by-case basis, when planning or conducting LC tasks but also improving administration controls (i.e., doctrine and policies) and personal protection (i.e., the physical conditioning of the soldier) as part of the hierarchy of controls. Practical application would involve commanders developing and implementing dedicated LC doctrine and policies and implementing and enforcing LC conditioning programs that meets best practice.

UR - http://www.scopus.com/inward/record.url?scp=84964837575&partnerID=8YFLogxK

U2 - 10.1519/JSC.0000000000001029

DO - 10.1519/JSC.0000000000001029

M3 - Article

VL - 29

SP - S119-S128

JO - Journal of Strength and Conditioning Research

JF - Journal of Strength and Conditioning Research

SN - 1064-8011

ER -