Abstract
Life-history theoretical models show that a typical evolutionarily optimal response of a juvenile organism to high mortality risk is to reach reproductive maturity earlier. Experimental studies in a range of species suggest the existence of adaptive flexibility in reproductive scheduling to maximize fitness just as life-history theory predicts. In humans, supportive evidence has come from studies comparing neighbourhoods with different mortality rates, historical and cross-cultural data. Here, the prediction is tested in a novel way in a large (n = 9099), longitudinal sample using data comparing age at first reproduction in individuals with and without life-expectancy-reducing chronic disease diagnosed during childhood. Diseases selected for inclusion as chronic illnesses were those unlikely to be significantly affected by shifting allocation of effort away from reproduction towards survival; those which have comparatively large effects on mortality and life expectancy; and those which are not profoundly disabling. The results confirmed the prediction that chronic disease would associate with early age at first reproduction: individuals growing up with a serious chronic disease were 1.6 times more likely to have had a first child by age 30. Analysis of control variables also confirmed past research findings on links between being raised father-absent and early pubertal development and reproduction.
| Original language | English |
|---|---|
| Pages (from-to) | 2998-3002 |
| Number of pages | 5 |
| Journal | Proceedings of the Royal Society B: Biological Sciences |
| Volume | 279 |
| Issue number | 1740 |
| DOIs | |
| Publication status | Published - 7 Aug 2012 |
| Externally published | Yes |