Investigation of Mitochondrial Related Variants in a Cerebral Small Vessel Disease Cohort

P J Dunn, N R Harvey, N Maksemous, R A Smith, H G Sutherland, L M Haupt, L R Griffiths

Research output: Contribution to journalArticleResearchpeer-review


Monogenic forms of cerebral small vessel disease (CSVD) can be caused by both variants in nuclear DNA and mitochondrial DNA (mtDNA). Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is known to have a phenotype similar to Cerebral Autosomal Dominant Arteriopathy with Sub-cortical Infarcts and Leukoencephalopathy (CADASIL), and can be caused by variants in the mitochondrial genome and in several nuclear-encoded mitochondrial protein (NEMP) genes. The aim of this study was to screen for variants in the mitochondrial genome and NEMP genes in a NOTCH3-negative CADASIL cohort, to identify a potential link between mitochondrial dysfunction and CSVD pathology. Whole exome sequencing was performed for 50 patients with CADASIL-like symptomology on the Ion Torrent system. Mitochondrial sequencing was performed using an in-house designed protocol with sequencing run on the Ion GeneStudio S5 Plus (S5 +). NEMP genes and mitochondrial sequencing data were examined for rare (MAF < 0.001), non-synonymous variants that were predicted to have a deleterious effect on the protein. We identified 29 candidate NEMP variants that had links to either MELAS-, encephalopathy-, or Alzheimer's disease-related phenotypes. Based on these changes, variants affecting POLG, MTO1, LONP1, NDUFAF6, NDUFB3, and TCIRG1 were thought to play a potential role in CSVD pathology in this cohort. Overall, the exploration of the mitochondrial genome identified a potential role for mitochondrial related proteins and mtDNA variants contributing to CSVD pathologies.

Original languageEnglish
JournalMolecular Neurobiology
Publication statusE-pub ahead of print - 14 Jun 2022


Dive into the research topics of 'Investigation of Mitochondrial Related Variants in a Cerebral Small Vessel Disease Cohort'. Together they form a unique fingerprint.

Cite this