TY - JOUR
T1 - Human corticospinal-motoneuronal output is reduced with 5-HT2 receptor antagonism
AU - Thorstensen, Jacob R.
AU - Taylor, Janet L.
AU - Kavanagh, Justin J.
N1 - Publisher Copyright:
Copyright © 2021 the American Physiological Society.
PY - 2021/4/13
Y1 - 2021/4/13
N2 - Animal models indicate that serotonin (5-HT) release onto motoneurons facilitates motor output, particularly during strong motor activities. However, evidence for 5-HT effects during human movement are limited. This study examined how antagonism of the 5-HT2 receptor, which is a 5-HT receptor that promotes motoneuron excitability, affects human movement. Ten healthy participants (24.2 ± 1.9 yr) ingested 8 mg of cyproheptadine (competitive 5-HT2 antagonist) in a double-blinded, placebo-controlled, repeated-measures design. Transcranial magnetic stimulation (TMS) of the motor cortex was used to elicit motor evoked potentials (MEPs) from biceps brachii. First, stimulus-response curves (90%–160% active motor threshold) were obtained during very weak elbow flexions (10% of maximal). Second, to determine if 5-HT effects are scaled to the intensity of muscle contraction, TMS at a fixed intensity was applied during elbow flexions of 20%, 40%, 60%, 80%, and 100% of maximal. Cyproheptadine reduced the size of MEPs across the stimulus-response curves (P = 0.045). Notably, MEP amplitude was 22.3% smaller for the cyproheptadine condition for the strongest TMS intensity. In addition, cyproheptadine reduced maximal torque (P = 0.045), lengthened the biceps silent period during maximal elbow flexions (P = 0.037), and reduced superimposed twitch amplitude during moderate-intensity elbow flexions (P = 0.035). This study presents novel evidence that 5-HT2 receptors influence corticospinal-motoneuronal output, which was particularly evident when a large number of descending inputs to motoneurons were active. Although it is likely that antagonism of 5-HT2 receptors reduces motoneuron gain to ionotropic inputs, supraspinal mechanisms may have also contributed to the study findings.
AB - Animal models indicate that serotonin (5-HT) release onto motoneurons facilitates motor output, particularly during strong motor activities. However, evidence for 5-HT effects during human movement are limited. This study examined how antagonism of the 5-HT2 receptor, which is a 5-HT receptor that promotes motoneuron excitability, affects human movement. Ten healthy participants (24.2 ± 1.9 yr) ingested 8 mg of cyproheptadine (competitive 5-HT2 antagonist) in a double-blinded, placebo-controlled, repeated-measures design. Transcranial magnetic stimulation (TMS) of the motor cortex was used to elicit motor evoked potentials (MEPs) from biceps brachii. First, stimulus-response curves (90%–160% active motor threshold) were obtained during very weak elbow flexions (10% of maximal). Second, to determine if 5-HT effects are scaled to the intensity of muscle contraction, TMS at a fixed intensity was applied during elbow flexions of 20%, 40%, 60%, 80%, and 100% of maximal. Cyproheptadine reduced the size of MEPs across the stimulus-response curves (P = 0.045). Notably, MEP amplitude was 22.3% smaller for the cyproheptadine condition for the strongest TMS intensity. In addition, cyproheptadine reduced maximal torque (P = 0.045), lengthened the biceps silent period during maximal elbow flexions (P = 0.037), and reduced superimposed twitch amplitude during moderate-intensity elbow flexions (P = 0.035). This study presents novel evidence that 5-HT2 receptors influence corticospinal-motoneuronal output, which was particularly evident when a large number of descending inputs to motoneurons were active. Although it is likely that antagonism of 5-HT2 receptors reduces motoneuron gain to ionotropic inputs, supraspinal mechanisms may have also contributed to the study findings.
UR - http://www.scopus.com/inward/record.url?scp=85104276020&partnerID=8YFLogxK
U2 - https://doi.org/10.1152/jn.00698.2020
DO - https://doi.org/10.1152/jn.00698.2020
M3 - Article
SN - 1522-1598
VL - 125
SP - 1279
EP - 1288
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 4
ER -