Abstract
Purpose
Total factor productivity (TFP) change is an important driver of long-run economic growth in the construction sector. However, examining TFP alone is insufficient to identify the cause of TFP changes. Therefore, this paper employs the infrequently used Geometric Young Index (GYI) and stochastic frontier analysis (SFA) to measure and decompose the TFP Index (TFPI) at the firm-level from 2009 to 2018 based on Malaysian construction firms' data.
Design/methodology/approach
To improve the TFPI estimation, normally unobserved environmental variables were included in the GYI-TFPI model. These are the physical operation of the firm (inland versus marine operation) and regional locality (West Malaysia versus East Malaysia). Consequently, the complete components of TFPI (i.e. technological, environmental, managerial, and statistical noise) can be accurately decomposed.
Findings
The results reveal that TFP change is affected by technological stagnation and improvements in technical efficiency but a decline in scale-mix efficiency. Moreover, the effect of environmental efficiency on TFP is most profound. In this case, being a marine construction firm and operating in East Malaysia can reduce TFPI by up to 38%. The result, therefore, indicates the need for progressive policies to improve long-term productivity.
Practical implications
Monitoring and evaluating productivity change allows an informed decision to be made by managers/policy makers to improve firms' competitiveness. Incentives and policies to improve innovation, competition, training, removing unnecessary taxes and regulation on outputs (inputs) could enhance the technological, technical and scale-mix of resources. Furthermore, improving public infrastructure, particularly in East Malaysia could improve regionality locality in relation to the environmental index.
Originality/value
This study contributes to knowledge by demonstrating how TFP components can be completely modelled using an aggregator index with good axiomatic properties and SFA. In addition, this paper is the first to apply and include the GYI and environmental variables in modelling construction productivity, which is of crucial importance in formulating appropriate policies.
Total factor productivity (TFP) change is an important driver of long-run economic growth in the construction sector. However, examining TFP alone is insufficient to identify the cause of TFP changes. Therefore, this paper employs the infrequently used Geometric Young Index (GYI) and stochastic frontier analysis (SFA) to measure and decompose the TFP Index (TFPI) at the firm-level from 2009 to 2018 based on Malaysian construction firms' data.
Design/methodology/approach
To improve the TFPI estimation, normally unobserved environmental variables were included in the GYI-TFPI model. These are the physical operation of the firm (inland versus marine operation) and regional locality (West Malaysia versus East Malaysia). Consequently, the complete components of TFPI (i.e. technological, environmental, managerial, and statistical noise) can be accurately decomposed.
Findings
The results reveal that TFP change is affected by technological stagnation and improvements in technical efficiency but a decline in scale-mix efficiency. Moreover, the effect of environmental efficiency on TFP is most profound. In this case, being a marine construction firm and operating in East Malaysia can reduce TFPI by up to 38%. The result, therefore, indicates the need for progressive policies to improve long-term productivity.
Practical implications
Monitoring and evaluating productivity change allows an informed decision to be made by managers/policy makers to improve firms' competitiveness. Incentives and policies to improve innovation, competition, training, removing unnecessary taxes and regulation on outputs (inputs) could enhance the technological, technical and scale-mix of resources. Furthermore, improving public infrastructure, particularly in East Malaysia could improve regionality locality in relation to the environmental index.
Originality/value
This study contributes to knowledge by demonstrating how TFP components can be completely modelled using an aggregator index with good axiomatic properties and SFA. In addition, this paper is the first to apply and include the GYI and environmental variables in modelling construction productivity, which is of crucial importance in formulating appropriate policies.
Original language | English |
---|---|
Pages (from-to) | 618-637 |
Number of pages | 20 |
Journal | Engineering, Construction and Architectural Management |
Volume | 31 |
Issue number | 2 |
Early online date | 27 Sept 2022 |
DOIs | |
Publication status | Published - 1 Feb 2024 |