Explicit formulae for parameters of stochastic models of a discounted equity index using maximum likelihood estimation with applications

Kevin John Fergusson

Research output: Contribution to journalArticleResearchpeer-review

3 Citations (Scopus)
18 Downloads (Pure)

Abstract

A discounted equity index is computed as the ratio of an equity index to the accumulated savings account denominated in the same currency. In this way, discounting provides a natural way of separating the modeling of the short rate from the market price of risk component of the equity index. In this vein, we investigate the applicability of maximum likelihood estimation to stochastic models of a discounted equity index, providing explicit formulae for parameter estimates. We restrict our consideration to two important index models, namely the Black–Scholes model and the minimal market model of Platen, each having an explicit formula for the transition density function. Explicit formulae for estimates of the model parameters and their standard errors are derived and are used in fitting the two models to US data. Further, we demonstrate the effect of the model choice on the no-arbitrage assumption employed in risk neutral pricing.
Original languageEnglish
Article number1750010
JournalAnnals of Financial Economics
Volume12
Issue number2
DOIs
Publication statusPublished - 14 Jul 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Explicit formulae for parameters of stochastic models of a discounted equity index using maximum likelihood estimation with applications'. Together they form a unique fingerprint.

Cite this