Abstract
Purpose:
This study aimed to determine the effects of school-based, bone-focused exercise interventions on bone, fat, and lean mass in children by systematically reviewing and meta-analyzing the literature.
Methods:
Potentially relevant articles were identified by searching electronic databases. Abstracts were included if they described the effects of an in-school exercise intervention for children 5-17 yr old compared with controls and presented baseline and follow-up results for bone, fat, and lean measures. Identified studies were systematically reviewed for methodological quality. Meta-analyses were performed for whole body, lumbar spine, and femoral neck bone mineral content (BMC), fat, and lean mass.
Results:
Sixteen eligible trials were identified including eight randomized controlled trials, three clinical controlled trials, and five nonrandomized, nonmatched studies. The quality analysis revealed two studies had low, nine had medium, and five had a high risk of bias. Meta-analyses revealed a small positive effect of bone-targeted exercise on whole body BMC (standardized mean difference [SMD] = 0.483, 95% CI = 0.132-0.833), femoral neck BMC (SMD = 0.292, 95% CI = -0.022 to 0.607), lumbar spine BMC (SMD = 0.384, 95% CI = 0.193-0.575), fat mass (SMD = -0.248, 95% CI = -0.406 to -0.089), and lean mass (SMD = 0.159, 95% CI = -0.076 to 0.394).
Conclusions:
Beneficial effects of school-based, bone-targeted exercise were observed for bone and fat, but not for lean mass. Excluding trials with high risk of bias strengthened that effect. Considerable study heterogeneity may have obscured effects on lean mass. The effects observed for bone and fat support the pursuit of brief, jumping-focused interventions to reduce fat as well as enhance musculoskeletal tissue in school age children.
This study aimed to determine the effects of school-based, bone-focused exercise interventions on bone, fat, and lean mass in children by systematically reviewing and meta-analyzing the literature.
Methods:
Potentially relevant articles were identified by searching electronic databases. Abstracts were included if they described the effects of an in-school exercise intervention for children 5-17 yr old compared with controls and presented baseline and follow-up results for bone, fat, and lean measures. Identified studies were systematically reviewed for methodological quality. Meta-analyses were performed for whole body, lumbar spine, and femoral neck bone mineral content (BMC), fat, and lean mass.
Results:
Sixteen eligible trials were identified including eight randomized controlled trials, three clinical controlled trials, and five nonrandomized, nonmatched studies. The quality analysis revealed two studies had low, nine had medium, and five had a high risk of bias. Meta-analyses revealed a small positive effect of bone-targeted exercise on whole body BMC (standardized mean difference [SMD] = 0.483, 95% CI = 0.132-0.833), femoral neck BMC (SMD = 0.292, 95% CI = -0.022 to 0.607), lumbar spine BMC (SMD = 0.384, 95% CI = 0.193-0.575), fat mass (SMD = -0.248, 95% CI = -0.406 to -0.089), and lean mass (SMD = 0.159, 95% CI = -0.076 to 0.394).
Conclusions:
Beneficial effects of school-based, bone-targeted exercise were observed for bone and fat, but not for lean mass. Excluding trials with high risk of bias strengthened that effect. Considerable study heterogeneity may have obscured effects on lean mass. The effects observed for bone and fat support the pursuit of brief, jumping-focused interventions to reduce fat as well as enhance musculoskeletal tissue in school age children.
Original language | English |
---|---|
Pages (from-to) | 610-621 |
Number of pages | 11 |
Journal | Medicine and Science in Sports and Exercise |
Volume | 46 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2014 |
Externally published | Yes |