Energy Management through Cost Forecasting for Residential Buildings in New Zealand

Linlin Zhao, Zhansheng Liu, Jasper Mbachu

Research output: Contribution to journalArticleResearchpeer-review

30 Downloads (Pure)

Abstract

Over the last two decades, the residential building sector has been one of the largest energy consumption sectors in New Zealand. The relationship between that sector and household energy consumption should be carefully studied in order to optimize the energy consumption structure and satisfy energy demands. Researchers have made efforts in this field; however, few have concentrated on the association between household energy use and the cost of residential buildings. This study examined the correlation between household energy use and residential building cost. Analysis of the data indicates that they are significantly correlated. Hence, this study proposes time series methods, including the exponential smoothing method and the autoregressive integrated moving average (ARIMA) model for forecasting residential building costs of five categories of residential buildings (one-storey house, two-storey house, townhouse, residential apartment and retirement village building) in New Zealand. Moreover, the artificial neutral networks (ANNs) model was used to forecast the future usage of three types of household energy (electricity, gas and petrol) using the residential building costs. The t-test was used to validate the effectiveness of the obtained ANN models. The results indicate that the ANN models can generate acceptable forecasts. The primary contributions of this paper are twofold: (1) Identify the close correlation between household energy use and residential building costs; (2) provide a new clue for optimizing energy management.

Original languageEnglish
Article number2888
Number of pages24
JournalEnergies
Volume12
Issue number15
DOIs
Publication statusPublished - 1 Aug 2019

Cite this

@article{090f58fd9ca24e0b957b087f9c6cc230,
title = "Energy Management through Cost Forecasting for Residential Buildings in New Zealand",
abstract = "Over the last two decades, the residential building sector has been one of the largest energy consumption sectors in New Zealand. The relationship between that sector and household energy consumption should be carefully studied in order to optimize the energy consumption structure and satisfy energy demands. Researchers have made efforts in this field; however, few have concentrated on the association between household energy use and the cost of residential buildings. This study examined the correlation between household energy use and residential building cost. Analysis of the data indicates that they are significantly correlated. Hence, this study proposes time series methods, including the exponential smoothing method and the autoregressive integrated moving average (ARIMA) model for forecasting residential building costs of five categories of residential buildings (one-storey house, two-storey house, townhouse, residential apartment and retirement village building) in New Zealand. Moreover, the artificial neutral networks (ANNs) model was used to forecast the future usage of three types of household energy (electricity, gas and petrol) using the residential building costs. The t-test was used to validate the effectiveness of the obtained ANN models. The results indicate that the ANN models can generate acceptable forecasts. The primary contributions of this paper are twofold: (1) Identify the close correlation between household energy use and residential building costs; (2) provide a new clue for optimizing energy management.",
author = "Linlin Zhao and Zhansheng Liu and Jasper Mbachu",
year = "2019",
month = "8",
day = "1",
doi = "10.3390/en12152888",
language = "English",
volume = "12",
journal = "Energies",
issn = "1996-1073",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "15",

}

Energy Management through Cost Forecasting for Residential Buildings in New Zealand. / Zhao, Linlin; Liu, Zhansheng; Mbachu, Jasper.

In: Energies, Vol. 12, No. 15, 2888, 01.08.2019.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Energy Management through Cost Forecasting for Residential Buildings in New Zealand

AU - Zhao, Linlin

AU - Liu, Zhansheng

AU - Mbachu, Jasper

PY - 2019/8/1

Y1 - 2019/8/1

N2 - Over the last two decades, the residential building sector has been one of the largest energy consumption sectors in New Zealand. The relationship between that sector and household energy consumption should be carefully studied in order to optimize the energy consumption structure and satisfy energy demands. Researchers have made efforts in this field; however, few have concentrated on the association between household energy use and the cost of residential buildings. This study examined the correlation between household energy use and residential building cost. Analysis of the data indicates that they are significantly correlated. Hence, this study proposes time series methods, including the exponential smoothing method and the autoregressive integrated moving average (ARIMA) model for forecasting residential building costs of five categories of residential buildings (one-storey house, two-storey house, townhouse, residential apartment and retirement village building) in New Zealand. Moreover, the artificial neutral networks (ANNs) model was used to forecast the future usage of three types of household energy (electricity, gas and petrol) using the residential building costs. The t-test was used to validate the effectiveness of the obtained ANN models. The results indicate that the ANN models can generate acceptable forecasts. The primary contributions of this paper are twofold: (1) Identify the close correlation between household energy use and residential building costs; (2) provide a new clue for optimizing energy management.

AB - Over the last two decades, the residential building sector has been one of the largest energy consumption sectors in New Zealand. The relationship between that sector and household energy consumption should be carefully studied in order to optimize the energy consumption structure and satisfy energy demands. Researchers have made efforts in this field; however, few have concentrated on the association between household energy use and the cost of residential buildings. This study examined the correlation between household energy use and residential building cost. Analysis of the data indicates that they are significantly correlated. Hence, this study proposes time series methods, including the exponential smoothing method and the autoregressive integrated moving average (ARIMA) model for forecasting residential building costs of five categories of residential buildings (one-storey house, two-storey house, townhouse, residential apartment and retirement village building) in New Zealand. Moreover, the artificial neutral networks (ANNs) model was used to forecast the future usage of three types of household energy (electricity, gas and petrol) using the residential building costs. The t-test was used to validate the effectiveness of the obtained ANN models. The results indicate that the ANN models can generate acceptable forecasts. The primary contributions of this paper are twofold: (1) Identify the close correlation between household energy use and residential building costs; (2) provide a new clue for optimizing energy management.

U2 - 10.3390/en12152888

DO - 10.3390/en12152888

M3 - Article

VL - 12

JO - Energies

JF - Energies

SN - 1996-1073

IS - 15

M1 - 2888

ER -