Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas

Yibo Yao, Tao Suo, Roland Andersson, Yongqing Cao, Chen Wang, Jingen Lu, Evelyne Chui

Research output: Contribution to journalReview articleResearchpeer-review

22 Citations (Scopus)
3 Downloads (Pure)

Abstract

BACKGROUND: This is an update of the Cochrane review published in 2002.Colorectal cancer (CRC) is a major cause of morbidity and mortality in industrialised countries. Experimental evidence has supported the hypothesis that dietary fibre may protect against the development of CRC, although epidemiologic data have been inconclusive.

OBJECTIVES: To assess the effect of dietary fibre on the recurrence of colorectal adenomatous polyps in people with a known history of adenomatous polyps and on the incidence of CRC compared to placebo. Further, to identify the reported incidence of adverse effects, such as abdominal pain or diarrhoea, that resulted from the fibre intervention.

SEARCH METHODS: We identified randomised controlled trials (RCTs) from Cochrane Colorectal Cancer's Specialised Register, CENTRAL, MEDLINE and Embase (search date, 4 April 2016). We also searched ClinicalTrials.gov and WHO International Trials Registry Platform on October 2016.

SELECTION CRITERIA: We included RCTs or quasi-RCTs. The population were those having a history of adenomatous polyps, but no previous history of CRC, and repeated visualisation of the colon/rectum after at least two-years' follow-up. Dietary fibre was the intervention. The primary outcomes were the number of participants with: 1. at least one adenoma, 2. more than one adenoma, 3. at least one adenoma greater than or equal to 1 cm, or 4. a new diagnosis of CRC. The secondary outcome was the number of adverse events.

DATA COLLECTION AND ANALYSIS: Two reviewers independently extracted data, assessed trial quality and resolved discrepancies by consensus. We used risk ratios (RR) and risk difference (RD) with 95% confidence intervals (CI) to measure the effect. If statistical significance was reached, we reported the number needed to treat for an additional beneficial outcome (NNTB) or harmful outcome (NNTH). We combined the study data using the fixed-effect model if it was clinically, methodologically, and statistically reasonable.

MAIN RESULTS: We included seven studies, of which five studies with 4798 participants provided data for analyses in this review. The mean ages of the participants ranged from 56 to 66 years. All participants had a history of adenomas, which had been removed to achieve a polyp-free colon at baseline. The interventions were wheat bran fibre, ispaghula husk, or a comprehensive dietary intervention with high fibre whole food sources alone or in combination. The comparators were low-fibre (2 to 3 g per day), placebo, or a regular diet. The combined data showed no statistically significant difference between the intervention and control groups for the number of participants with at least one adenoma (5 RCTs, n = 3641, RR 1.04, 95% CI 0.95 to 1.13, low-quality evidence), more than one adenoma (2 RCTs, n = 2542, RR 1.06, 95% CI 0.94 to 1.20, low-quality evidence), or at least one adenoma 1 cm or greater (4 RCTs, n = 3224, RR 0.99, 95% CI 0.82 to 1.20, low-quality evidence) at three to four years. The results on the number of participants diagnosed with colorectal cancer favoured the control group over the dietary fibre group (2 RCTS, n = 2794, RR 2.70, 95% CI 1.07 to 6.85, low-quality evidence). After 8 years of comprehensive dietary intervention, no statistically significant difference was found in the number of participants with at least one recurrent adenoma (1 RCT, n = 1905, RR 0.97, 95% CI 0.78 to 1.20), or with more than one adenoma (1 RCT, n = 1905, RR 0.89, 95% CI 0.64 to 1.24). More participants given ispaghula husk group had at least one recurrent adenoma than the control group (1 RCT, n = 376, RR 1.45, 95% CI 1.01 to 2.08). Other analyses by types of fibre intervention were not statistically significant. The overall dropout rate was over 16% in these trials with no reasons given for these losses. Sensitivity analysis incorporating these missing data shows that none of the results can be considered as robust; when the large numbers of participants lost to follow-up were assumed to have had an event or not, the results changed sufficiently to alter the conclusions that we would draw. Therefore, the reliability of the findings may have been compromised by these missing data (attrition bias) and should be interpreted with caution.

AUTHORS' CONCLUSIONS: There is a lack of evidence from existing RCTs to suggest that increased dietary fibre intake will reduce the recurrence of adenomatous polyps in those with a history of adenomatous polyps within a two to eight year period. However, these results may be unreliable and should be interpreted cautiously, not only because of the high rate of loss to follow-up, but also because adenomatous polyp is a surrogate outcome for the unobserved true endpoint CRC. Longer-term trials with higher dietary fibre levels are needed to enable confident conclusion.

Original languageEnglish
Article numberCD003430
Pages (from-to)CD003430
JournalCochrane database of systematic reviews (Online)
Volume1
Issue number1
DOIs
Publication statusPublished - 8 Jan 2017
Externally publishedYes

Fingerprint

Dietary Fiber
Adenoma
Colorectal Neoplasms
Adenomatous Polyps
Odds Ratio
Confidence Intervals
Randomized Controlled Trials
Psyllium
Control Groups
Colon
Placebos
Recurrence
Numbers Needed To Treat
Lost to Follow-Up
Incidence
Polyps
Developed Countries
Rectum
MEDLINE
Abdominal Pain

Cite this

Yao, Yibo ; Suo, Tao ; Andersson, Roland ; Cao, Yongqing ; Wang, Chen ; Lu, Jingen ; Chui, Evelyne. / Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas. In: Cochrane database of systematic reviews (Online). 2017 ; Vol. 1, No. 1. pp. CD003430.
@article{97a21d6658c74656a5136daa73fb39cb,
title = "Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas",
abstract = "BACKGROUND: This is an update of the Cochrane review published in 2002.Colorectal cancer (CRC) is a major cause of morbidity and mortality in industrialised countries. Experimental evidence has supported the hypothesis that dietary fibre may protect against the development of CRC, although epidemiologic data have been inconclusive.OBJECTIVES: To assess the effect of dietary fibre on the recurrence of colorectal adenomatous polyps in people with a known history of adenomatous polyps and on the incidence of CRC compared to placebo. Further, to identify the reported incidence of adverse effects, such as abdominal pain or diarrhoea, that resulted from the fibre intervention.SEARCH METHODS: We identified randomised controlled trials (RCTs) from Cochrane Colorectal Cancer's Specialised Register, CENTRAL, MEDLINE and Embase (search date, 4 April 2016). We also searched ClinicalTrials.gov and WHO International Trials Registry Platform on October 2016.SELECTION CRITERIA: We included RCTs or quasi-RCTs. The population were those having a history of adenomatous polyps, but no previous history of CRC, and repeated visualisation of the colon/rectum after at least two-years' follow-up. Dietary fibre was the intervention. The primary outcomes were the number of participants with: 1. at least one adenoma, 2. more than one adenoma, 3. at least one adenoma greater than or equal to 1 cm, or 4. a new diagnosis of CRC. The secondary outcome was the number of adverse events.DATA COLLECTION AND ANALYSIS: Two reviewers independently extracted data, assessed trial quality and resolved discrepancies by consensus. We used risk ratios (RR) and risk difference (RD) with 95{\%} confidence intervals (CI) to measure the effect. If statistical significance was reached, we reported the number needed to treat for an additional beneficial outcome (NNTB) or harmful outcome (NNTH). We combined the study data using the fixed-effect model if it was clinically, methodologically, and statistically reasonable.MAIN RESULTS: We included seven studies, of which five studies with 4798 participants provided data for analyses in this review. The mean ages of the participants ranged from 56 to 66 years. All participants had a history of adenomas, which had been removed to achieve a polyp-free colon at baseline. The interventions were wheat bran fibre, ispaghula husk, or a comprehensive dietary intervention with high fibre whole food sources alone or in combination. The comparators were low-fibre (2 to 3 g per day), placebo, or a regular diet. The combined data showed no statistically significant difference between the intervention and control groups for the number of participants with at least one adenoma (5 RCTs, n = 3641, RR 1.04, 95{\%} CI 0.95 to 1.13, low-quality evidence), more than one adenoma (2 RCTs, n = 2542, RR 1.06, 95{\%} CI 0.94 to 1.20, low-quality evidence), or at least one adenoma 1 cm or greater (4 RCTs, n = 3224, RR 0.99, 95{\%} CI 0.82 to 1.20, low-quality evidence) at three to four years. The results on the number of participants diagnosed with colorectal cancer favoured the control group over the dietary fibre group (2 RCTS, n = 2794, RR 2.70, 95{\%} CI 1.07 to 6.85, low-quality evidence). After 8 years of comprehensive dietary intervention, no statistically significant difference was found in the number of participants with at least one recurrent adenoma (1 RCT, n = 1905, RR 0.97, 95{\%} CI 0.78 to 1.20), or with more than one adenoma (1 RCT, n = 1905, RR 0.89, 95{\%} CI 0.64 to 1.24). More participants given ispaghula husk group had at least one recurrent adenoma than the control group (1 RCT, n = 376, RR 1.45, 95{\%} CI 1.01 to 2.08). Other analyses by types of fibre intervention were not statistically significant. The overall dropout rate was over 16{\%} in these trials with no reasons given for these losses. Sensitivity analysis incorporating these missing data shows that none of the results can be considered as robust; when the large numbers of participants lost to follow-up were assumed to have had an event or not, the results changed sufficiently to alter the conclusions that we would draw. Therefore, the reliability of the findings may have been compromised by these missing data (attrition bias) and should be interpreted with caution.AUTHORS' CONCLUSIONS: There is a lack of evidence from existing RCTs to suggest that increased dietary fibre intake will reduce the recurrence of adenomatous polyps in those with a history of adenomatous polyps within a two to eight year period. However, these results may be unreliable and should be interpreted cautiously, not only because of the high rate of loss to follow-up, but also because adenomatous polyp is a surrogate outcome for the unobserved true endpoint CRC. Longer-term trials with higher dietary fibre levels are needed to enable confident conclusion.",
author = "Yibo Yao and Tao Suo and Roland Andersson and Yongqing Cao and Chen Wang and Jingen Lu and Evelyne Chui",
year = "2017",
month = "1",
day = "8",
doi = "10.1002/14651858.CD003430.pub2",
language = "English",
volume = "1",
pages = "CD003430",
journal = "Cochrane database of systematic reviews (Online)",
issn = "1469-493X",
publisher = "Wiley-Blackwell",
number = "1",

}

Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas. / Yao, Yibo; Suo, Tao; Andersson, Roland; Cao, Yongqing; Wang, Chen; Lu, Jingen; Chui, Evelyne.

In: Cochrane database of systematic reviews (Online), Vol. 1, No. 1, CD003430, 08.01.2017, p. CD003430.

Research output: Contribution to journalReview articleResearchpeer-review

TY - JOUR

T1 - Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas

AU - Yao, Yibo

AU - Suo, Tao

AU - Andersson, Roland

AU - Cao, Yongqing

AU - Wang, Chen

AU - Lu, Jingen

AU - Chui, Evelyne

PY - 2017/1/8

Y1 - 2017/1/8

N2 - BACKGROUND: This is an update of the Cochrane review published in 2002.Colorectal cancer (CRC) is a major cause of morbidity and mortality in industrialised countries. Experimental evidence has supported the hypothesis that dietary fibre may protect against the development of CRC, although epidemiologic data have been inconclusive.OBJECTIVES: To assess the effect of dietary fibre on the recurrence of colorectal adenomatous polyps in people with a known history of adenomatous polyps and on the incidence of CRC compared to placebo. Further, to identify the reported incidence of adverse effects, such as abdominal pain or diarrhoea, that resulted from the fibre intervention.SEARCH METHODS: We identified randomised controlled trials (RCTs) from Cochrane Colorectal Cancer's Specialised Register, CENTRAL, MEDLINE and Embase (search date, 4 April 2016). We also searched ClinicalTrials.gov and WHO International Trials Registry Platform on October 2016.SELECTION CRITERIA: We included RCTs or quasi-RCTs. The population were those having a history of adenomatous polyps, but no previous history of CRC, and repeated visualisation of the colon/rectum after at least two-years' follow-up. Dietary fibre was the intervention. The primary outcomes were the number of participants with: 1. at least one adenoma, 2. more than one adenoma, 3. at least one adenoma greater than or equal to 1 cm, or 4. a new diagnosis of CRC. The secondary outcome was the number of adverse events.DATA COLLECTION AND ANALYSIS: Two reviewers independently extracted data, assessed trial quality and resolved discrepancies by consensus. We used risk ratios (RR) and risk difference (RD) with 95% confidence intervals (CI) to measure the effect. If statistical significance was reached, we reported the number needed to treat for an additional beneficial outcome (NNTB) or harmful outcome (NNTH). We combined the study data using the fixed-effect model if it was clinically, methodologically, and statistically reasonable.MAIN RESULTS: We included seven studies, of which five studies with 4798 participants provided data for analyses in this review. The mean ages of the participants ranged from 56 to 66 years. All participants had a history of adenomas, which had been removed to achieve a polyp-free colon at baseline. The interventions were wheat bran fibre, ispaghula husk, or a comprehensive dietary intervention with high fibre whole food sources alone or in combination. The comparators were low-fibre (2 to 3 g per day), placebo, or a regular diet. The combined data showed no statistically significant difference between the intervention and control groups for the number of participants with at least one adenoma (5 RCTs, n = 3641, RR 1.04, 95% CI 0.95 to 1.13, low-quality evidence), more than one adenoma (2 RCTs, n = 2542, RR 1.06, 95% CI 0.94 to 1.20, low-quality evidence), or at least one adenoma 1 cm or greater (4 RCTs, n = 3224, RR 0.99, 95% CI 0.82 to 1.20, low-quality evidence) at three to four years. The results on the number of participants diagnosed with colorectal cancer favoured the control group over the dietary fibre group (2 RCTS, n = 2794, RR 2.70, 95% CI 1.07 to 6.85, low-quality evidence). After 8 years of comprehensive dietary intervention, no statistically significant difference was found in the number of participants with at least one recurrent adenoma (1 RCT, n = 1905, RR 0.97, 95% CI 0.78 to 1.20), or with more than one adenoma (1 RCT, n = 1905, RR 0.89, 95% CI 0.64 to 1.24). More participants given ispaghula husk group had at least one recurrent adenoma than the control group (1 RCT, n = 376, RR 1.45, 95% CI 1.01 to 2.08). Other analyses by types of fibre intervention were not statistically significant. The overall dropout rate was over 16% in these trials with no reasons given for these losses. Sensitivity analysis incorporating these missing data shows that none of the results can be considered as robust; when the large numbers of participants lost to follow-up were assumed to have had an event or not, the results changed sufficiently to alter the conclusions that we would draw. Therefore, the reliability of the findings may have been compromised by these missing data (attrition bias) and should be interpreted with caution.AUTHORS' CONCLUSIONS: There is a lack of evidence from existing RCTs to suggest that increased dietary fibre intake will reduce the recurrence of adenomatous polyps in those with a history of adenomatous polyps within a two to eight year period. However, these results may be unreliable and should be interpreted cautiously, not only because of the high rate of loss to follow-up, but also because adenomatous polyp is a surrogate outcome for the unobserved true endpoint CRC. Longer-term trials with higher dietary fibre levels are needed to enable confident conclusion.

AB - BACKGROUND: This is an update of the Cochrane review published in 2002.Colorectal cancer (CRC) is a major cause of morbidity and mortality in industrialised countries. Experimental evidence has supported the hypothesis that dietary fibre may protect against the development of CRC, although epidemiologic data have been inconclusive.OBJECTIVES: To assess the effect of dietary fibre on the recurrence of colorectal adenomatous polyps in people with a known history of adenomatous polyps and on the incidence of CRC compared to placebo. Further, to identify the reported incidence of adverse effects, such as abdominal pain or diarrhoea, that resulted from the fibre intervention.SEARCH METHODS: We identified randomised controlled trials (RCTs) from Cochrane Colorectal Cancer's Specialised Register, CENTRAL, MEDLINE and Embase (search date, 4 April 2016). We also searched ClinicalTrials.gov and WHO International Trials Registry Platform on October 2016.SELECTION CRITERIA: We included RCTs or quasi-RCTs. The population were those having a history of adenomatous polyps, but no previous history of CRC, and repeated visualisation of the colon/rectum after at least two-years' follow-up. Dietary fibre was the intervention. The primary outcomes were the number of participants with: 1. at least one adenoma, 2. more than one adenoma, 3. at least one adenoma greater than or equal to 1 cm, or 4. a new diagnosis of CRC. The secondary outcome was the number of adverse events.DATA COLLECTION AND ANALYSIS: Two reviewers independently extracted data, assessed trial quality and resolved discrepancies by consensus. We used risk ratios (RR) and risk difference (RD) with 95% confidence intervals (CI) to measure the effect. If statistical significance was reached, we reported the number needed to treat for an additional beneficial outcome (NNTB) or harmful outcome (NNTH). We combined the study data using the fixed-effect model if it was clinically, methodologically, and statistically reasonable.MAIN RESULTS: We included seven studies, of which five studies with 4798 participants provided data for analyses in this review. The mean ages of the participants ranged from 56 to 66 years. All participants had a history of adenomas, which had been removed to achieve a polyp-free colon at baseline. The interventions were wheat bran fibre, ispaghula husk, or a comprehensive dietary intervention with high fibre whole food sources alone or in combination. The comparators were low-fibre (2 to 3 g per day), placebo, or a regular diet. The combined data showed no statistically significant difference between the intervention and control groups for the number of participants with at least one adenoma (5 RCTs, n = 3641, RR 1.04, 95% CI 0.95 to 1.13, low-quality evidence), more than one adenoma (2 RCTs, n = 2542, RR 1.06, 95% CI 0.94 to 1.20, low-quality evidence), or at least one adenoma 1 cm or greater (4 RCTs, n = 3224, RR 0.99, 95% CI 0.82 to 1.20, low-quality evidence) at three to four years. The results on the number of participants diagnosed with colorectal cancer favoured the control group over the dietary fibre group (2 RCTS, n = 2794, RR 2.70, 95% CI 1.07 to 6.85, low-quality evidence). After 8 years of comprehensive dietary intervention, no statistically significant difference was found in the number of participants with at least one recurrent adenoma (1 RCT, n = 1905, RR 0.97, 95% CI 0.78 to 1.20), or with more than one adenoma (1 RCT, n = 1905, RR 0.89, 95% CI 0.64 to 1.24). More participants given ispaghula husk group had at least one recurrent adenoma than the control group (1 RCT, n = 376, RR 1.45, 95% CI 1.01 to 2.08). Other analyses by types of fibre intervention were not statistically significant. The overall dropout rate was over 16% in these trials with no reasons given for these losses. Sensitivity analysis incorporating these missing data shows that none of the results can be considered as robust; when the large numbers of participants lost to follow-up were assumed to have had an event or not, the results changed sufficiently to alter the conclusions that we would draw. Therefore, the reliability of the findings may have been compromised by these missing data (attrition bias) and should be interpreted with caution.AUTHORS' CONCLUSIONS: There is a lack of evidence from existing RCTs to suggest that increased dietary fibre intake will reduce the recurrence of adenomatous polyps in those with a history of adenomatous polyps within a two to eight year period. However, these results may be unreliable and should be interpreted cautiously, not only because of the high rate of loss to follow-up, but also because adenomatous polyp is a surrogate outcome for the unobserved true endpoint CRC. Longer-term trials with higher dietary fibre levels are needed to enable confident conclusion.

UR - http://www.scopus.com/inward/record.url?scp=85008497371&partnerID=8YFLogxK

U2 - 10.1002/14651858.CD003430.pub2

DO - 10.1002/14651858.CD003430.pub2

M3 - Review article

VL - 1

SP - CD003430

JO - Cochrane database of systematic reviews (Online)

JF - Cochrane database of systematic reviews (Online)

SN - 1469-493X

IS - 1

M1 - CD003430

ER -