TY - JOUR
T1 - Cost Estimations of Water Pollution for the Adoption of Suitable Water Treatment Technology
AU - Mumbi, Anne Wambui
AU - Watanabe, Tsunemi
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/1/7
Y1 - 2022/1/7
N2 - This study analyzed the cost implications of using suitable technologies and the cost of inaction when addressing water pollution. This was achieved by developing three main models for the costs (model one) and benefits (model two and model three). The first model accounts for the operational costs of adopting suitable technologies, namely the use of diatomaceous earth for textile wastewater treatment. The second model analyzed the cost of inaction through analyzing the cost of treatment for water pollution-related diseases for the affected population. The occurrence and cost of treatment for three diseases, namely diarrhea, amoebiasis and bacterial infection, were used as indicators of water pollution in the area. The third model included the contingent valuation method (CVM) data on the willingness to pay for environmental restoration of the surveyed population. The benefit–cost ratio (BCR) of the resulting data from the three models were used to highlight the economic viability of the proposed project. A BCR of (0.67) for the cost of the proposed project versus the benefits of the project on human health using data from one hospital was obtained. There is a high possibility that the real BCR would increase if more data from other hospitals or other diseases were included. The results imply that the use of D.E can be considered a good candidate for treating wastewater. To thoroughly discuss the BCR of treating wastewater from one factory, the BCR of the proposed restoration project along River Sosiani, and the value of using DE as suitable technology, more studies are needed to evaluate the unaccounted costs and benefits for accurate economic estimations of the proposed project. The outcome of the study is a framework of numbers and figures that can be presented to decision makers and policy makers as critical information when making decisions.
AB - This study analyzed the cost implications of using suitable technologies and the cost of inaction when addressing water pollution. This was achieved by developing three main models for the costs (model one) and benefits (model two and model three). The first model accounts for the operational costs of adopting suitable technologies, namely the use of diatomaceous earth for textile wastewater treatment. The second model analyzed the cost of inaction through analyzing the cost of treatment for water pollution-related diseases for the affected population. The occurrence and cost of treatment for three diseases, namely diarrhea, amoebiasis and bacterial infection, were used as indicators of water pollution in the area. The third model included the contingent valuation method (CVM) data on the willingness to pay for environmental restoration of the surveyed population. The benefit–cost ratio (BCR) of the resulting data from the three models were used to highlight the economic viability of the proposed project. A BCR of (0.67) for the cost of the proposed project versus the benefits of the project on human health using data from one hospital was obtained. There is a high possibility that the real BCR would increase if more data from other hospitals or other diseases were included. The results imply that the use of D.E can be considered a good candidate for treating wastewater. To thoroughly discuss the BCR of treating wastewater from one factory, the BCR of the proposed restoration project along River Sosiani, and the value of using DE as suitable technology, more studies are needed to evaluate the unaccounted costs and benefits for accurate economic estimations of the proposed project. The outcome of the study is a framework of numbers and figures that can be presented to decision makers and policy makers as critical information when making decisions.
UR - http://www.scopus.com/inward/record.url?scp=85122255198&partnerID=8YFLogxK
U2 - 10.3390/su14020649
DO - 10.3390/su14020649
M3 - Article
AN - SCOPUS:85122255198
SN - 2071-1050
VL - 14
SP - 1
EP - 16
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 2
M1 - 649
ER -