Abstract
It has often been argued that there exists an underlying biological basis of utility functions. Taking this line of argument a step further in this paper, we have aimed to computationally demonstrate the biological basis of the Black-Scholes functional form as applied to classical option pricing and hedging theory. The evolutionary optimality of the classical Black-Scholes function has been computationally established by means of a haploid genetic algorithm model. The objective was to minimize the dynamic hedging error for a portfolio of assets that is built to replicate the payoff from a European multi-asset option. The functional form that is seen to evolve over successive generations which best attains this optimization objective is the classical Black-Scholes function extended to a multiasset scenario.
Original language | English |
---|---|
Article number | 39460 |
Number of pages | 15 |
Journal | Journal of Applied Mathematics and Decision Sciences |
Volume | 2007 |
DOIs | |
Publication status | Published - 2007 |