Abstract
Background:
Repeat power ability (RPA) assessments traditionally use discrete variables, such as peak power output, to quantify the change in performance across a series of jumps. Rather than using a discrete variable, the analysis of the entire force-time curve may provide additional insight into RPA performance. The aims of this study were to (1) analyse changes in the force-time curve recorded during an RPA assessment using statistical parametric mapping (SPM) and (2) compare the differences in the force-time curve between participants with low and high RPA scores, as quantified by traditional analysis.
Materials and Methods:
Eleven well-trained field hockey players performed an RPA assessment consisting of 20 loaded countermovement jumps with a 30% one repetition maximum half squat load (LCMJ20). Mean force-time series data was normalized to 100% of the movement duration and analysed using SPM. Peak power output for each jump was also derived from the force-time data and a percent decrement score calculated for jumps 2 to 19 (RPA%dec). An SPM one-way ANOVA with significance accepted at α = 0.05, was used to identify the change in the force-time curve over three distinct series of jumps across the LCMJ20 (series 1 = jumps 2–5, series 2 = jumps 9–12 and series 3 = jumps 16–19). A secondary analysis, using an independent T-test with significance accepted at p < 0.001, was also used to identify differences in the force-time curve between participants with low and high RPA%dec.
Results:
Propulsive forces were significantly lower (p < 0.001) between 74–98% of the movement compared to 0–73% for changes recorded during the LCMJ20. Post hoc analysis identified the greatest differences to occur between jump series 1 and jump series 2 (p < 0.001) at 70–98% of the movement and between jump series 1 and jump series 3 (p < 0.001) at 86–99% of the movement. No significant differences were found between jump series 2 and jump series 3. Significant differences (p < 0.001) in both the braking phase at 44–48% of the jump and the propulsive phase at 74–94% of the jump were identified when participants were classified based on low or high RPA%dec scores (with low scores representing an enhanced ability to maintain peak power output than high scores).
Conclusion:
A reduction in force during the late propulsive phase is evident as the LCMJ20 progresses. SPM analysis provides refined insight into where changes in the force-time curve occur during performance of the LCMJ20. Participants with the lower RPA%dec scores displayed both larger braking and propulsive forces across the LCMJ20 assessment.
Original language | English |
---|---|
Article number | e17971 |
Pages (from-to) | 1-20 |
Number of pages | 20 |
Journal | PEERJ |
Volume | 12 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2024 |
Student theses
-
An investigation of the concept of repeat power ability in repeated high intensity effort performance
Author: Natera, A., 28 Nov 2024Supervisor: Keogh, J. (Supervisor), Chapman, D. (External person) (Supervisor) & Chapman, N. (Supervisor)
Student thesis: Doctoral Thesis
File