A novel myeloid cell in murine spleen defined through gene profiling

Research output: Contribution to journalArticleResearchpeer-review

100 Downloads (Pure)

Abstract

A novel myeloid antigen presenting cell can be generated through in vitro haematopoiesis in long-term splenic stromal cocultures. The in vivo equivalent subset was recently identified as phenotypically and functionally distinct from the spleen subsets of macrophages, conventional (c) dendritic cells (DC), resident monocytes, inflammatory monocytes and eosinophils. This novel subset which is myeloid on the basis of cell surface phenotype, but dendritic-like on the basis of cell surface marker expression and antigen presenting function, has been tentatively labelled "L-DC." Transcriptome analysis has now been employed to determine the lineage relationship of this cell type with known splenic cDC and monocyte subsets. Principal components analysis showed separation of "L-DC" and monocytes from cDC subsets in the second principal component. Hierarchical clustering then indicated a close lineage relationship between this novel subset, resident monocytes and inflammatory monocytes. Resident monocytes were the most closely aligned, with no genes specifically expressed by the novel subset. This subset, however, showed upregulation of genes reflecting both dendritic and myeloid lineages, with strong upregulation of several genes, particularly CD300e. While resident monocytes were found to be dependent on Toll-like receptor signalling for development and were reduced in number in Myd88-/- and Trif-/- mutant mice, both the novel subset and inflammatory monocytes were unaffected. Here, we describe a novel myeloid cell type closely aligned with resident monocytes in terms of lineage but distinct in terms of development and functional capacity.

Original languageEnglish
Article number14382
Pages (from-to)5128-5143
Number of pages16
JournalJournal of Cellular and Molecular Medicine
Volume23
Issue number8
Early online date18 Jun 2019
DOIs
Publication statusPublished - 1 Aug 2019

    Fingerprint

Cite this