A clustered repeated-sprint running protocol for team-sport athletes performed in normobaric hypoxia

Jaime Morrison, Chris McLellan, Clare Minahan

Research output: Contribution to journalArticleResearchpeer-review

9 Citations (Scopus)

Abstract

The present study compared the performance (peak speed, distance, and acceleration) of ten amateur team-sport athletes during a clustered (i.e., multiple sets) repeated-sprint protocol, (4 sets of 4, 4-s running sprints; i.e., RSR444) in normobaric normoxia (FiO2 = 0.209; i.e., RSN) with normobaric hypoxia (FiO2 = 0.140; i.e., RSH). Subjects completed two separate trials (i. RSN, ii. RSH; randomised order) between 48 h and 72 h apart on a non-motorized treadmill. In addition to performance, we examined blood lactate concentration [La-] and arterial oxygen saturation (SpO2) before, during, and after the RSR444. While there were no differences in peak speed or distance during set 1 or set 2, peak speed (p = 0.04 and 0.02, respectively) and distance (p = 0.04 and 0.02, respectively) were greater during set 3 and set 4 of RSN compared with RSH. There was no difference in the average acceleration achieved in set 1 (p = 0.45), set 2 (p = 0.26), or set 3 (p = 0.23) between RSN and RSH; however, the average acceleration was greater in RSN than RSH in set 4 (p < 0.01). Measurements of [La-] were higher during RSH than RSN immediately after Sprint 16 (10.2 ± 2.5 vs 8.6 ± 2.6 mM; p = 0.02). Estimations of SpO2 were lower during RSH than RSN, respectively, immediately prior to the commencement of the test (89.0 ± 2.0 vs 97.2 ± 1.5 %), post Sprint 8 (78.0 ± 6.3 vs 93.8 ± 3.6 %) and post Sprint 16 (75.3 ± 6.3 vs 94.5 ± 2.5 %; all p < 0.01). In summary, the RSR444 is a practical protocol for the implementation of a hypoxic repeated-sprint training intervention into the training schedules of team-sport athletes. However, given the inability of amateur team-sport athletes to maintain performance in hypoxic (FiO2 = 0.140) conditions, the potential for specific training outcomes (i.e. speed) to be achieved will be compromised, thus suggesting that the RSR444 should be used with caution.

Original languageEnglish
Pages (from-to)857-863
Number of pages7
JournalJournal of Sports Science and Medicine
Volume14
Issue number4
Publication statusPublished - 1 Dec 2015

Fingerprint

Running
Athletes
Sports
Lactic Acid
Appointments and Schedules
Oxygen
Hypoxia

Cite this

Morrison, Jaime ; McLellan, Chris ; Minahan, Clare. / A clustered repeated-sprint running protocol for team-sport athletes performed in normobaric hypoxia. In: Journal of Sports Science and Medicine. 2015 ; Vol. 14, No. 4. pp. 857-863.
@article{50f85f3614994da795a4ac7dcc29c157,
title = "A clustered repeated-sprint running protocol for team-sport athletes performed in normobaric hypoxia",
abstract = "The present study compared the performance (peak speed, distance, and acceleration) of ten amateur team-sport athletes during a clustered (i.e., multiple sets) repeated-sprint protocol, (4 sets of 4, 4-s running sprints; i.e., RSR444) in normobaric normoxia (FiO2 = 0.209; i.e., RSN) with normobaric hypoxia (FiO2 = 0.140; i.e., RSH). Subjects completed two separate trials (i. RSN, ii. RSH; randomised order) between 48 h and 72 h apart on a non-motorized treadmill. In addition to performance, we examined blood lactate concentration [La-] and arterial oxygen saturation (SpO2) before, during, and after the RSR444. While there were no differences in peak speed or distance during set 1 or set 2, peak speed (p = 0.04 and 0.02, respectively) and distance (p = 0.04 and 0.02, respectively) were greater during set 3 and set 4 of RSN compared with RSH. There was no difference in the average acceleration achieved in set 1 (p = 0.45), set 2 (p = 0.26), or set 3 (p = 0.23) between RSN and RSH; however, the average acceleration was greater in RSN than RSH in set 4 (p < 0.01). Measurements of [La-] were higher during RSH than RSN immediately after Sprint 16 (10.2 ± 2.5 vs 8.6 ± 2.6 mM; p = 0.02). Estimations of SpO2 were lower during RSH than RSN, respectively, immediately prior to the commencement of the test (89.0 ± 2.0 vs 97.2 ± 1.5 {\%}), post Sprint 8 (78.0 ± 6.3 vs 93.8 ± 3.6 {\%}) and post Sprint 16 (75.3 ± 6.3 vs 94.5 ± 2.5 {\%}; all p < 0.01). In summary, the RSR444 is a practical protocol for the implementation of a hypoxic repeated-sprint training intervention into the training schedules of team-sport athletes. However, given the inability of amateur team-sport athletes to maintain performance in hypoxic (FiO2 = 0.140) conditions, the potential for specific training outcomes (i.e. speed) to be achieved will be compromised, thus suggesting that the RSR444 should be used with caution.",
author = "Jaime Morrison and Chris McLellan and Clare Minahan",
year = "2015",
month = "12",
day = "1",
language = "English",
volume = "14",
pages = "857--863",
journal = "Journal of Sports Science and Medicine",
issn = "1303-2968",
publisher = "Department of Sports Medicine, Medical Faculty of Uludag University",
number = "4",

}

A clustered repeated-sprint running protocol for team-sport athletes performed in normobaric hypoxia. / Morrison, Jaime; McLellan, Chris; Minahan, Clare.

In: Journal of Sports Science and Medicine, Vol. 14, No. 4, 01.12.2015, p. 857-863.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - A clustered repeated-sprint running protocol for team-sport athletes performed in normobaric hypoxia

AU - Morrison, Jaime

AU - McLellan, Chris

AU - Minahan, Clare

PY - 2015/12/1

Y1 - 2015/12/1

N2 - The present study compared the performance (peak speed, distance, and acceleration) of ten amateur team-sport athletes during a clustered (i.e., multiple sets) repeated-sprint protocol, (4 sets of 4, 4-s running sprints; i.e., RSR444) in normobaric normoxia (FiO2 = 0.209; i.e., RSN) with normobaric hypoxia (FiO2 = 0.140; i.e., RSH). Subjects completed two separate trials (i. RSN, ii. RSH; randomised order) between 48 h and 72 h apart on a non-motorized treadmill. In addition to performance, we examined blood lactate concentration [La-] and arterial oxygen saturation (SpO2) before, during, and after the RSR444. While there were no differences in peak speed or distance during set 1 or set 2, peak speed (p = 0.04 and 0.02, respectively) and distance (p = 0.04 and 0.02, respectively) were greater during set 3 and set 4 of RSN compared with RSH. There was no difference in the average acceleration achieved in set 1 (p = 0.45), set 2 (p = 0.26), or set 3 (p = 0.23) between RSN and RSH; however, the average acceleration was greater in RSN than RSH in set 4 (p < 0.01). Measurements of [La-] were higher during RSH than RSN immediately after Sprint 16 (10.2 ± 2.5 vs 8.6 ± 2.6 mM; p = 0.02). Estimations of SpO2 were lower during RSH than RSN, respectively, immediately prior to the commencement of the test (89.0 ± 2.0 vs 97.2 ± 1.5 %), post Sprint 8 (78.0 ± 6.3 vs 93.8 ± 3.6 %) and post Sprint 16 (75.3 ± 6.3 vs 94.5 ± 2.5 %; all p < 0.01). In summary, the RSR444 is a practical protocol for the implementation of a hypoxic repeated-sprint training intervention into the training schedules of team-sport athletes. However, given the inability of amateur team-sport athletes to maintain performance in hypoxic (FiO2 = 0.140) conditions, the potential for specific training outcomes (i.e. speed) to be achieved will be compromised, thus suggesting that the RSR444 should be used with caution.

AB - The present study compared the performance (peak speed, distance, and acceleration) of ten amateur team-sport athletes during a clustered (i.e., multiple sets) repeated-sprint protocol, (4 sets of 4, 4-s running sprints; i.e., RSR444) in normobaric normoxia (FiO2 = 0.209; i.e., RSN) with normobaric hypoxia (FiO2 = 0.140; i.e., RSH). Subjects completed two separate trials (i. RSN, ii. RSH; randomised order) between 48 h and 72 h apart on a non-motorized treadmill. In addition to performance, we examined blood lactate concentration [La-] and arterial oxygen saturation (SpO2) before, during, and after the RSR444. While there were no differences in peak speed or distance during set 1 or set 2, peak speed (p = 0.04 and 0.02, respectively) and distance (p = 0.04 and 0.02, respectively) were greater during set 3 and set 4 of RSN compared with RSH. There was no difference in the average acceleration achieved in set 1 (p = 0.45), set 2 (p = 0.26), or set 3 (p = 0.23) between RSN and RSH; however, the average acceleration was greater in RSN than RSH in set 4 (p < 0.01). Measurements of [La-] were higher during RSH than RSN immediately after Sprint 16 (10.2 ± 2.5 vs 8.6 ± 2.6 mM; p = 0.02). Estimations of SpO2 were lower during RSH than RSN, respectively, immediately prior to the commencement of the test (89.0 ± 2.0 vs 97.2 ± 1.5 %), post Sprint 8 (78.0 ± 6.3 vs 93.8 ± 3.6 %) and post Sprint 16 (75.3 ± 6.3 vs 94.5 ± 2.5 %; all p < 0.01). In summary, the RSR444 is a practical protocol for the implementation of a hypoxic repeated-sprint training intervention into the training schedules of team-sport athletes. However, given the inability of amateur team-sport athletes to maintain performance in hypoxic (FiO2 = 0.140) conditions, the potential for specific training outcomes (i.e. speed) to be achieved will be compromised, thus suggesting that the RSR444 should be used with caution.

UR - http://www.scopus.com/inward/record.url?scp=84948184943&partnerID=8YFLogxK

M3 - Article

VL - 14

SP - 857

EP - 863

JO - Journal of Sports Science and Medicine

JF - Journal of Sports Science and Medicine

SN - 1303-2968

IS - 4

ER -