A brief description of the biomechanics and physiology of a strongman event: The tire flip

Justin W L Keogh, Amenda L Payne, Brad B Anderson, Paul J Atkins

Research output: Contribution to journalArticleResearchpeer-review

14 Citations (Scopus)

Abstract

The purpose of this study was to (a) characterize the temporal aspects of a popular strongman event, the tire flip; (b) gain some insight into the temporal factors that could distinguish the slowest and fastest flips; and (c) obtain preliminary data on the physiological stress of this exercise. Five resistance-trained subjects with experience in performing the tire flip gave informed consent to participate in this study. Each subject performed 2 sets of 6 tire flips with a 232-kg tire with 3 minutes of rest between sets. Temporal variables were obtained from video cameras positioned 10 m from the tire, perpendicular to the intended direction of the tire flip. Using the "stopwatch" function in Silicon Coach, the duration of each tire flip and that of the first pull, second pull, transition, and push phases were recorded. Physiological stress was estimated via heart rate and finger-prick blood lactate response. Independent T-tests revealed that the 2 faster subjects (0.38 +/- 0.17 s) had significantly (p < 0.001) shorter second pull durations than the 3 slower subjects (1.49 +/- 0.92 s). Paired T-tests revealed that the duration of the second pull for each subject's fastest 3 trials (0.55 +/- 0.35 s) were significantly (p = 0.007) less than their 3 slowest trials (1.69 +/- 1.35 s). Relatively high heart rate (179 +/- 8 bpm) and blood lactate (10.4 +/- 1.3 mmol/L(-1)) values were found at the conclusion of the second set. Overall, the results of this study suggest that the duration of the second pull is a key determinant of tire flip performance and that this exercise provides relatively high degrees of physiological stress.

Original languageEnglish
Pages (from-to)1223-8
Number of pages6
JournalJournal of Strength and Conditioning Research
Volume24
Issue number5
DOIs
Publication statusPublished - 2010
Externally publishedYes

Fingerprint

Physiological Stress
Biomechanical Phenomena
Lactic Acid
Heart Rate
Phase Transition
Silicon
Informed Consent
Fingers

Cite this

@article{1c154c80ee7446608195ba05e2e98ffe,
title = "A brief description of the biomechanics and physiology of a strongman event: The tire flip",
abstract = "The purpose of this study was to (a) characterize the temporal aspects of a popular strongman event, the tire flip; (b) gain some insight into the temporal factors that could distinguish the slowest and fastest flips; and (c) obtain preliminary data on the physiological stress of this exercise. Five resistance-trained subjects with experience in performing the tire flip gave informed consent to participate in this study. Each subject performed 2 sets of 6 tire flips with a 232-kg tire with 3 minutes of rest between sets. Temporal variables were obtained from video cameras positioned 10 m from the tire, perpendicular to the intended direction of the tire flip. Using the {"}stopwatch{"} function in Silicon Coach, the duration of each tire flip and that of the first pull, second pull, transition, and push phases were recorded. Physiological stress was estimated via heart rate and finger-prick blood lactate response. Independent T-tests revealed that the 2 faster subjects (0.38 +/- 0.17 s) had significantly (p < 0.001) shorter second pull durations than the 3 slower subjects (1.49 +/- 0.92 s). Paired T-tests revealed that the duration of the second pull for each subject's fastest 3 trials (0.55 +/- 0.35 s) were significantly (p = 0.007) less than their 3 slowest trials (1.69 +/- 1.35 s). Relatively high heart rate (179 +/- 8 bpm) and blood lactate (10.4 +/- 1.3 mmol/L(-1)) values were found at the conclusion of the second set. Overall, the results of this study suggest that the duration of the second pull is a key determinant of tire flip performance and that this exercise provides relatively high degrees of physiological stress.",
author = "Keogh, {Justin W L} and Payne, {Amenda L} and Anderson, {Brad B} and Atkins, {Paul J}",
year = "2010",
doi = "10.1519/JSC.0b013e3181cc61cd",
language = "English",
volume = "24",
pages = "1223--8",
journal = "Journal of Strength and Conditioning Research",
issn = "1064-8011",
publisher = "Lippincott Williams & Wilkins",
number = "5",

}

A brief description of the biomechanics and physiology of a strongman event : The tire flip. / Keogh, Justin W L; Payne, Amenda L; Anderson, Brad B; Atkins, Paul J.

In: Journal of Strength and Conditioning Research, Vol. 24, No. 5, 2010, p. 1223-8.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - A brief description of the biomechanics and physiology of a strongman event

T2 - The tire flip

AU - Keogh, Justin W L

AU - Payne, Amenda L

AU - Anderson, Brad B

AU - Atkins, Paul J

PY - 2010

Y1 - 2010

N2 - The purpose of this study was to (a) characterize the temporal aspects of a popular strongman event, the tire flip; (b) gain some insight into the temporal factors that could distinguish the slowest and fastest flips; and (c) obtain preliminary data on the physiological stress of this exercise. Five resistance-trained subjects with experience in performing the tire flip gave informed consent to participate in this study. Each subject performed 2 sets of 6 tire flips with a 232-kg tire with 3 minutes of rest between sets. Temporal variables were obtained from video cameras positioned 10 m from the tire, perpendicular to the intended direction of the tire flip. Using the "stopwatch" function in Silicon Coach, the duration of each tire flip and that of the first pull, second pull, transition, and push phases were recorded. Physiological stress was estimated via heart rate and finger-prick blood lactate response. Independent T-tests revealed that the 2 faster subjects (0.38 +/- 0.17 s) had significantly (p < 0.001) shorter second pull durations than the 3 slower subjects (1.49 +/- 0.92 s). Paired T-tests revealed that the duration of the second pull for each subject's fastest 3 trials (0.55 +/- 0.35 s) were significantly (p = 0.007) less than their 3 slowest trials (1.69 +/- 1.35 s). Relatively high heart rate (179 +/- 8 bpm) and blood lactate (10.4 +/- 1.3 mmol/L(-1)) values were found at the conclusion of the second set. Overall, the results of this study suggest that the duration of the second pull is a key determinant of tire flip performance and that this exercise provides relatively high degrees of physiological stress.

AB - The purpose of this study was to (a) characterize the temporal aspects of a popular strongman event, the tire flip; (b) gain some insight into the temporal factors that could distinguish the slowest and fastest flips; and (c) obtain preliminary data on the physiological stress of this exercise. Five resistance-trained subjects with experience in performing the tire flip gave informed consent to participate in this study. Each subject performed 2 sets of 6 tire flips with a 232-kg tire with 3 minutes of rest between sets. Temporal variables were obtained from video cameras positioned 10 m from the tire, perpendicular to the intended direction of the tire flip. Using the "stopwatch" function in Silicon Coach, the duration of each tire flip and that of the first pull, second pull, transition, and push phases were recorded. Physiological stress was estimated via heart rate and finger-prick blood lactate response. Independent T-tests revealed that the 2 faster subjects (0.38 +/- 0.17 s) had significantly (p < 0.001) shorter second pull durations than the 3 slower subjects (1.49 +/- 0.92 s). Paired T-tests revealed that the duration of the second pull for each subject's fastest 3 trials (0.55 +/- 0.35 s) were significantly (p = 0.007) less than their 3 slowest trials (1.69 +/- 1.35 s). Relatively high heart rate (179 +/- 8 bpm) and blood lactate (10.4 +/- 1.3 mmol/L(-1)) values were found at the conclusion of the second set. Overall, the results of this study suggest that the duration of the second pull is a key determinant of tire flip performance and that this exercise provides relatively high degrees of physiological stress.

U2 - 10.1519/JSC.0b013e3181cc61cd

DO - 10.1519/JSC.0b013e3181cc61cd

M3 - Article

VL - 24

SP - 1223

EP - 1228

JO - Journal of Strength and Conditioning Research

JF - Journal of Strength and Conditioning Research

SN - 1064-8011

IS - 5

ER -